Skip to main content
Top

2021 | OriginalPaper | Chapter

15. Coal Fly Ash Utilisation and Environmental Impact

Authors : Shanjida Sultana, Saifuddin Ahsan, Sakib Tanvir, Nawshad Haque, Firoz Alam, Mohan Yellishetty

Published in: Clean Coal Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The global power generation is dominated by coal (38%) followed by natural gas (23%), hydro (16%), nuclear (11%), wind (5%), oil (3%), solar (2%) and biofuel (2%) in 2019. The coal-fired power generation creates coal ash (fly ash—85% and bottom ash—15%) nearly 1 billion tonne annually. Although the coal ash was considered waste and dumped as land fill, the application of fly ash in various fields has created around 4 billion US dollar global market in 2020 with the predicted annual increase of 6%. Despite industrial-scale utilisation, limited information is available on potential value-added material extraction from the coal fly ash. This book chapter reviews the current industrial-scale utilisation of coal ash. The paper also undertakes a case study of coal ash utilisation in an emerging nation, as most emerging nations are expected to leverage coal as cheap energy source for power generation to accelerate their industrial and economic development. Furthermore, an analysis on potential metal (including rare earth element) value contained in coal fly ash has also been undertaken to highlight its economic value. The increased industrial-scale utilisation and potential extraction of metal from coal ash ensures a win–win situation for environment, economy, and supplementation of global rare earth element stock.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alam, F., & Alam, Q. (2020b). Power generation and regional development in South Asia. In Q. Alam, A. Rahman, & S. R. U. Islam (Eds.), The economic development of Bangladesh in the Asian century (p. 240). Oxon: Routledge. ISBN 978-0-367-528768.CrossRef Alam, F., & Alam, Q. (2020b). Power generation and regional development in South Asia. In Q. Alam, A. Rahman, & S. R. U. Islam (Eds.), The economic development of Bangladesh in the Asian century (p. 240). Oxon: Routledge. ISBN 978-0-367-528768.CrossRef
go back to reference Alam, Q., & Alam, F. (2020a). Power generation and regional collaboration in South Asia. In M. A. Alam, Q. Alam, R. Khair, & M. R. Karim (Eds.), Managing change for better public service delivery (pp. 277–316). Oxon: Routledge. ISBN 978–0–367-47242-9. Alam, Q., & Alam, F. (2020a). Power generation and regional collaboration in South Asia. In M. A. Alam, Q. Alam, R. Khair, & M. R. Karim (Eds.), Managing change for better public service delivery (pp. 277–316). Oxon: Routledge. ISBN 978–0–367-47242-9.
go back to reference Alam, Q., Alam, F., Chowdhury, H., Sarkar, R., & Paul, A. R. (2019). A review on the regional collaboration of power utilisation in South Asia. Energy Procedia, 160, 11–17.CrossRef Alam, Q., Alam, F., Chowdhury, H., Sarkar, R., & Paul, A. R. (2019). A review on the regional collaboration of power utilisation in South Asia. Energy Procedia, 160, 11–17.CrossRef
go back to reference Baruya, P. (2019). The economic and strategic value of coal. CCC/296 (p. 115). London: IEA Clean Coal Centre. Baruya, P. (2019). The economic and strategic value of coal. CCC/296 (p. 115). London: IEA Clean Coal Centre.
go back to reference Blissett, R. S., Smalley, N., & Rowson, N. A. (2014). An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel, 119, 236–239.CrossRef Blissett, R. S., Smalley, N., & Rowson, N. A. (2014). An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel, 119, 236–239.CrossRef
go back to reference Bouzoubaâ, N., & Lachemi, M. (2001). Self-compacting concrete incorporating high volumes of class F Fly ash: Preliminary results. Cement and Concrete Research, 31(3), 413–420.CrossRef Bouzoubaâ, N., & Lachemi, M. (2001). Self-compacting concrete incorporating high volumes of class F Fly ash: Preliminary results. Cement and Concrete Research, 31(3), 413–420.CrossRef
go back to reference EPRI. (2009). Coal ash: Characteristics, management and environmental issues. Technical update (p. 12). Palo Alto, CA: Electric Power Research Institute. EPRI. (2009). Coal ash: Characteristics, management and environmental issues. Technical update (p. 12). Palo Alto, CA: Electric Power Research Institute.
go back to reference Franus, W., Wiatros-Motyka, M. M., & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22(12), 9464–9474.CrossRef Franus, W., Wiatros-Motyka, M. M., & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22(12), 9464–9474.CrossRef
go back to reference Gesoǧlu, M., Güneyisi, E., & Özbay, E. (2009). Properties of self compacting concretes made with binary, ternary, and quaternary cementitious blends of Fly ash, blast furnace slag, and silica fume. Construction and Building Materials, 23(5), 1847–1854.CrossRef Gesoǧlu, M., Güneyisi, E., & Özbay, E. (2009). Properties of self compacting concretes made with binary, ternary, and quaternary cementitious blends of Fly ash, blast furnace slag, and silica fume. Construction and Building Materials, 23(5), 1847–1854.CrossRef
go back to reference Hemalatha, T., & Ramaswamy, A. (2017). A review on Fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559.CrossRef Hemalatha, T., & Ramaswamy, A. (2017). A review on Fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559.CrossRef
go back to reference Khan, I., Castel, A., & Gilbert, R. I. (2017). Effects of Fly ash on early-age properties and cracking of concrete. ACI Materials Journal, 114(4), 673–681.CrossRef Khan, I., Castel, A., & Gilbert, R. I. (2017). Effects of Fly ash on early-age properties and cracking of concrete. ACI Materials Journal, 114(4), 673–681.CrossRef
go back to reference Khan, M. A. A., Saha, M. S., Sultana, S., Ahmed, A. N., & Das, R. C. (2013). Coal Fly ash of Barapukuria thermal power plant, Bangladesh: Physico chemical properties assessment and utilization. International Journal of Science and Engineering Research, 4(11), 1456–1460. Khan, M. A. A., Saha, M. S., Sultana, S., Ahmed, A. N., & Das, R. C. (2013). Coal Fly ash of Barapukuria thermal power plant, Bangladesh: Physico chemical properties assessment and utilization. International Journal of Science and Engineering Research, 4(11), 1456–1460.
go back to reference Li, J., Liu, K., Tu, L., & Jiao, Y. (2014). Crack control technology for concrete of super large section precast. Applied Mechanics and Materials, 578–579, 1240–1246. Li, J., Liu, K., Tu, L., & Jiao, Y. (2014). Crack control technology for concrete of super large section precast. Applied Mechanics and Materials, 578–579, 1240–1246.
go back to reference Ma, S. H., Xu, M. D., Qiqige, Wang, X. H., & Zhou, X. (2017). Challenges and developments in the utilization of fly ash in China. International Journal of Environmental Science and Development, 8(11), 781–785.CrossRef Ma, S. H., Xu, M. D., Qiqige, Wang, X. H., & Zhou, X. (2017). Challenges and developments in the utilization of fly ash in China. International Journal of Environmental Science and Development, 8(11), 781–785.CrossRef
go back to reference Mayfield, D., & Lewis, A. (2013). Coal ash: A resource for rare earth and strategic elements. Ash at Work, 1, 17–21. Mayfield, D., & Lewis, A. (2013). Coal ash: A resource for rare earth and strategic elements. Ash at Work, 1, 17–21.
go back to reference Nath, A. J., Lal, R., & Das, A. K. (2018). Fired bricks: CO2 emission and food insecurity. Global Challenges, 2(4), 5.CrossRef Nath, A. J., Lal, R., & Das, A. K. (2018). Fired bricks: CO2 emission and food insecurity. Global Challenges, 2(4), 5.CrossRef
go back to reference Nguyen, H. A., Chang, T. P., Shih, J. Y., Chen, C. T., & Nguyen, T. D. (2015). Influence of circulating fluidized bed combustion (CFBC) Fly ash on properties of modified high volume low calcium Fly ash (HVFA) cement paste. Construction and Building Materials, 91, 208–215.CrossRef Nguyen, H. A., Chang, T. P., Shih, J. Y., Chen, C. T., & Nguyen, T. D. (2015). Influence of circulating fluidized bed combustion (CFBC) Fly ash on properties of modified high volume low calcium Fly ash (HVFA) cement paste. Construction and Building Materials, 91, 208–215.CrossRef
go back to reference Reid, I., Carpenter, A.M., & Masili, A. (2020). Beneficial uses of coal fly ash. IEA Clean Coal Centre, Report number CCC/303. London, UK, ISBN 978–92–9029–626-3. Reid, I., Carpenter, A.M., & Masili, A. (2020). Beneficial uses of coal fly ash. IEA Clean Coal Centre, Report number CCC/303. London, UK, ISBN 978–92–9029–626-3.
go back to reference Sumer, M. (2012). Compressive strength and sulphate resistance properties of concretes containing class F and class C Fly ashes. Construction and Building Materials, 34, 531–536.CrossRef Sumer, M. (2012). Compressive strength and sulphate resistance properties of concretes containing class F and class C Fly ashes. Construction and Building Materials, 34, 531–536.CrossRef
go back to reference Xu, G., & Shi, X. (2018). Characteristics and applications of Fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling, 136, 95–109.CrossRef Xu, G., & Shi, X. (2018). Characteristics and applications of Fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling, 136, 95–109.CrossRef
go back to reference Yadav, V. K., & Fulekar, M. H. (2018). The current scenario of thermal power plants and fly ash: Production and utilisation with a focus on India. International Journal of Advanced Engineering and Research Development, 5(4), 768–777. Yadav, V. K., & Fulekar, M. H. (2018). The current scenario of thermal power plants and fly ash: Production and utilisation with a focus on India. International Journal of Advanced Engineering and Research Development, 5(4), 768–777.
go back to reference Zhang, X. (2014). Management of coal combustion wastes. CCC/231 (p. 68). London: IEA Clean Coal Centre. Zhang, X. (2014). Management of coal combustion wastes. CCC/231 (p. 68). London: IEA Clean Coal Centre.
Metadata
Title
Coal Fly Ash Utilisation and Environmental Impact
Authors
Shanjida Sultana
Saifuddin Ahsan
Sakib Tanvir
Nawshad Haque
Firoz Alam
Mohan Yellishetty
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68502-7_15