Skip to main content
Top

2020 | OriginalPaper | Chapter

Coastal GNSS-R Code Delay Altimetry Using GPS L5 Signals

Authors : Xinyue Meng, Fan Gao, Tianhe Xu, Yunqiao He, Ti Chu, Nazi Wang

Published in: China Satellite Navigation Conference (CSNC) 2020 Proceedings: Volume I

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, with the gradual completion of different GNSS constellations, the available L-band navigation signals have become more abundant. Not only can they be used for PNT (Positioning, Navigation, and Timing), but the reflected signals can also be used for retrieving a variety of geophysical parameters such as sea surface height. Coastal GNSS-R (Global Navigation Satellite System Reflectometry) code delay altimetry obtains the path delay measurements between reflected signal and corresponding direct signal based on ranging code. And the height from sea surface to antenna can be calculated according to the geometric relationship of sea surface altimetry. In order to achieve path delay with higher accuracy, we performed coastal GNSS-R altimetry experiment on a trestle using GPS L5 signals with high ranging code rate. The digital IF (intermediate frequency) data at 25 MHz sample rate were collected during the experiment. Then, self-developed software-defined receiver was used to process the IF data. As the code modulation methods of in-phase (I component) and quadrature-phase (Q component) on GPS L5 carrier are different, we tested the accuracy of I and Q component for sea surface altimetry, separately. In addition, considering different coherent integration time have a certain impact on the accuracy, 1 ms and 10 ms coherent integration time are adopted to compute the path delay based on I and Q component. The results show: for 1 ms coherent integration, the RMSE of I and Q component are 0.70 m and 0.61 m, respectively; while the coherent integration time is 10 ms, the RMSE of I and Q component are 0.54 m and 0.43 m, respectively. To sum up, increasing coherent integration time can improve the accuracy; the altimetry accuracy of the Q component signal is better than that of I component signal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Martin-Neira, M., Colmenarejo, P., Ruffini, G., Serra, C.: Altimetry precision of 1 cm over a pond using the wide-lane carrier phase of GPS reflected signals. Can. J. Remote. Sens. 28(3), 394–403 (2002)CrossRef Martin-Neira, M., Colmenarejo, P., Ruffini, G., Serra, C.: Altimetry precision of 1 cm over a pond using the wide-lane carrier phase of GPS reflected signals. Can. J. Remote. Sens. 28(3), 394–403 (2002)CrossRef
2.
go back to reference Penna, N.T., Morales, M.M.A., Ian, M., Jing, G., Foden, P.R.: Sea surface height measurement using a GNSS wave glider. Geophys. Res. Lett. 45, 5609–5616 (2018)CrossRef Penna, N.T., Morales, M.M.A., Ian, M., Jing, G., Foden, P.R.: Sea surface height measurement using a GNSS wave glider. Geophys. Res. Lett. 45, 5609–5616 (2018)CrossRef
3.
go back to reference Martin-Neira, M., Colmenarejo, P., Ruffini, G., et al.: Ocean altimetry using the carrier phase of GNSS reflected signals. Cersat J. 11(22) (2000) Martin-Neira, M., Colmenarejo, P., Ruffini, G., et al.: Ocean altimetry using the carrier phase of GNSS reflected signals. Cersat J. 11(22) (2000)
4.
go back to reference Liu, W., Beckheinrich, J., Semmling, M., et al.: Coastal sea-level measurements based on GNSS-R phase altimetry: a case study at the Onsala space observatory, Sweden. IEEE Trans. Geosci. Remote Sens. 55, 1–12 (2017) Liu, W., Beckheinrich, J., Semmling, M., et al.: Coastal sea-level measurements based on GNSS-R phase altimetry: a case study at the Onsala space observatory, Sweden. IEEE Trans. Geosci. Remote Sens. 55, 1–12 (2017)
5.
go back to reference Larson, K.M., Ray, R.D., Nievinski, F.G., et al.: The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci. Remote Sens. Pap. 10(5), 1200–1204 (2013)CrossRef Larson, K.M., Ray, R.D., Nievinski, F.G., et al.: The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci. Remote Sens. Pap. 10(5), 1200–1204 (2013)CrossRef
6.
go back to reference Roggenbuck, O., Reinking, J.: Sea surface heights retrieval from ship-based measurements assisted by GNSS signal reflections. Mar. Geod. 42, 1–24 (2019)CrossRef Roggenbuck, O., Reinking, J.: Sea surface heights retrieval from ship-based measurements assisted by GNSS signal reflections. Mar. Geod. 42, 1–24 (2019)CrossRef
7.
go back to reference Martin-Neira, M., Caparrini, M., Font-Rosselló, J., et al.: The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals. IEEE Trans. Geosci. Remote Sens. 39(1), 142–149 (2001)CrossRef Martin-Neira, M., Caparrini, M., Font-Rosselló, J., et al.: The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals. IEEE Trans. Geosci. Remote Sens. 39(1), 142–149 (2001)CrossRef
8.
go back to reference Anderson, K.D.: Determination of water level and tides using interferometric observations of GPS signals. J. Atmos. Ocean. Technol. 17(8), 1118–1127 (2000)CrossRef Anderson, K.D.: Determination of water level and tides using interferometric observations of GPS signals. J. Atmos. Ocean. Technol. 17(8), 1118–1127 (2000)CrossRef
9.
go back to reference Benton, C.J., Mitchell, C.N.: Isolating the multipath component in GNSS signal-to-noise data and locating reflecting objects. Radio Sci. 46(6), 1–11 (2011)CrossRef Benton, C.J., Mitchell, C.N.: Isolating the multipath component in GNSS signal-to-noise data and locating reflecting objects. Radio Sci. 46(6), 1–11 (2011)CrossRef
10.
go back to reference Nazi, W., Tianhe, X., Fan, G., et al.: Sea level estimation based on GNSS dual-frequency carrier phase linear combinations and SNR. Remote Sens. 10(3), 470 (2018)CrossRef Nazi, W., Tianhe, X., Fan, G., et al.: Sea level estimation based on GNSS dual-frequency carrier phase linear combinations and SNR. Remote Sens. 10(3), 470 (2018)CrossRef
Metadata
Title
Coastal GNSS-R Code Delay Altimetry Using GPS L5 Signals
Authors
Xinyue Meng
Fan Gao
Tianhe Xu
Yunqiao He
Ti Chu
Nazi Wang
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3707-3_11