Skip to main content
Top

2025 | OriginalPaper | Chapter

6. Coating and Rimming Flow, Rivulet Flow, and the Evaporation of a Sessile Droplet

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a thorough examination of thin-film fluid dynamics and evaporation processes, with a particular focus on coating, rimming, and rivulet flows, as well as the evaporation of sessile droplets. The analysis employs advanced asymptotic methods to explore the behavior of fluids on both stationary and rotating cylinders, providing a deep understanding of the underlying mechanisms. The chapter begins with an in-depth look at coating and rimming flows, discussing the pioneering work of Moffatt (1977) and subsequent studies that have expanded on this foundational research. It delves into the critical parameters that govern these flows, such as the aspect ratio of the film and the non-dimensional weight per unit axial length, and explores the different flow regimes that can occur. The chapter also examines the fascinating phenomenon of load shedding in coating flows and the development of rapid variation regions in rimming flows. Moving on to rivulet flow, the chapter investigates the gravity-driven draining of a viscous fluid down an inclined substrate. It discusses the unidirectional flow of a uniform rivulet, the locally unidirectional flow of a slowly-varying rivulet, and the non-uniform flow of a slender rivulet, providing a comprehensive overview of the various aspects of rivulet dynamics. The chapter also explores the evaporation of sessile droplets, a fundamental problem with wide-ranging applications. It discusses the diffusion-limited model of evaporation, which assumes that the evaporation is controlled by the diffusion of vapor in the quiescent atmosphere. The chapter examines the shape of the droplet, the evaporative problem, and the hydrodynamic and thermal problems associated with droplet evaporation. It also discusses the evolution and lifetime of thin droplets evaporating in different modes, including the constant radius (CR) mode, the constant angle (CA) mode, the stick-slide (SS) mode, and the stick-jump (SJ) mode. The chapter concludes with a discussion of various extensions and generalizations of the diffusion-limited model, including temperature-dependent saturation concentration, droplets on non-planar substrates, and the competitive evaporation of multiple droplets. Throughout the chapter, the use of asymptotic methods provides unique insights into the complex dynamics of fluid flow and evaporation, making it an essential resource for those interested in these phenomena.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Footnotes
1
Note that Moffatt (1977) gave the incorrect value of 0.866 instead of \(\sqrt{6}/4 \simeq 0.612\) for the coefficient of \(\vert \theta \vert \) in his corresponding expression for the film thickness.
 
2
Note that Moffatt (1977) gave the slightly inaccurate numerical value of 4.428 for the critical weight.
 
3
Note that the corresponding critical values given by Tirumkudulu & Acrivos (2001), namely 1.5862 and 2.2135, are slightly inaccurate and should be 1.5859 and 2.2046.
 
Literature
go back to reference Al Mukahal, F. H. H., Duffy, B. R., & Wilson, S. K. (2015a). A rivulet of a power-law fluid with constant contact angle draining down a slowly varying substrate. Physics of Fluids, 27(5), 052101. Al Mukahal, F. H. H., Duffy, B. R., & Wilson, S. K. (2015a). A rivulet of a power-law fluid with constant contact angle draining down a slowly varying substrate. Physics of Fluids, 27(5), 052101.
go back to reference Al Mukahal, F. H. H., Duffy, B. R., & Wilson, S. K. (2018). Rivulet flow of generalized Newtonian fluids. Physical Review Fluids, 3(8), 083302. Al Mukahal, F. H. H., Duffy, B. R., & Wilson, S. K. (2018). Rivulet flow of generalized Newtonian fluids. Physical Review Fluids, 3(8), 083302.
go back to reference Al Mukahal, F. H. H., Wilson, S. K., & Duffy, B. R. (2015b). A rivulet of a power-law fluid with constant width draining down a slowly varying substrate. Journal of Non-Newtonian Fluid Mechanics, 224, 30–39. Al Mukahal, F. H. H., Wilson, S. K., & Duffy, B. R. (2015b). A rivulet of a power-law fluid with constant width draining down a slowly varying substrate. Journal of Non-Newtonian Fluid Mechanics, 224, 30–39.
go back to reference Alshaikhi, A. S., Wilson, S. K., & Duffy, B. R. (2020). Rivulet flow down a slippery substrate. Physics of Fluids, 32(7), 072011. Alshaikhi, A. S., Wilson, S. K., & Duffy, B. R. (2020). Rivulet flow down a slippery substrate. Physics of Fluids, 32(7), 072011.
go back to reference Alshaikhi, A. S., Wilson, S. K., & Duffy, B. R. (2021). Rivulet flow over and through a permeable membrane. Physical Review Fluids, 6(10), 104003. Alshaikhi, A. S., Wilson, S. K., & Duffy, B. R. (2021). Rivulet flow over and through a permeable membrane. Physical Review Fluids, 6(10), 104003.
go back to reference Ashmore, J., Hosoi, A. E., & Stone, H. A. (2003). The effect of surface tension on rimming flows in a partially filled rotating cylinder. Journal of Fluid Mechanics, 479, 65–98. Ashmore, J., Hosoi, A. E., & Stone, H. A. (2003). The effect of surface tension on rimming flows in a partially filled rotating cylinder. Journal of Fluid Mechanics, 479, 65–98.
go back to reference Boote, O. A. M., & Thomas, P. J. (1999). Effects of granular additives on transition boundaries between flow states of rimming flows. Physics of Fluids, 11(8), 2020–2029. Boote, O. A. M., & Thomas, P. J. (1999). Effects of granular additives on transition boundaries between flow states of rimming flows. Physics of Fluids, 11(8), 2020–2029.
go back to reference D’Ambrosio, H.-M., Colosimo, T., Duffy, B. R., Wilson, S. K., Yang, L., Bain, C. D., & Walker, D. E. (2021). Evaporation of a thin droplet in a shallow well: theory and experiment. Journal of Fluid Mechanics, 927, A43. D’Ambrosio, H.-M., Colosimo, T., Duffy, B. R., Wilson, S. K., Yang, L., Bain, C. D., & Walker, D. E. (2021). Evaporation of a thin droplet in a shallow well: theory and experiment. Journal of Fluid Mechanics, 927, A43.
go back to reference D’Ambrosio, H.-M., Wilson, S. K., Wray, A. W., & Duffy, B. R. (2023). The effect of the spatial variation of the evaporative flux on the deposition from a thin sessile droplet. Journal of Fluid Mechanics, 970, A1. D’Ambrosio, H.-M., Wilson, S. K., Wray, A. W., & Duffy, B. R. (2023). The effect of the spatial variation of the evaporative flux on the deposition from a thin sessile droplet. Journal of Fluid Mechanics, 970, A1.
go back to reference Duffy, B. R., & Moffatt, H. K. (1995). Flow of a viscous trickle on a slowly varying incline. Chemical Engineering Journal, 60(1–3), 141–146. Duffy, B. R., & Moffatt, H. K. (1995). Flow of a viscous trickle on a slowly varying incline. Chemical Engineering Journal, 60(1–3), 141–146.
go back to reference Duffy, B. R., & Moffatt, H. K. (1997). A similarity solution for viscous source flow on a vertical plane. European Journal of Applied Mathematics, 8(1), 37–47. Duffy, B. R., & Moffatt, H. K. (1997). A similarity solution for viscous source flow on a vertical plane. European Journal of Applied Mathematics, 8(1), 37–47.
go back to reference Duffy, B. R., & Wilson, S. K. (1999). Thin-film and curtain flows on the outside of a rotating horizontal cylinder. Journal of Fluid Mechanics, 394, 29–49. Duffy, B. R., & Wilson, S. K. (1999). Thin-film and curtain flows on the outside of a rotating horizontal cylinder. Journal of Fluid Mechanics, 394, 29–49.
go back to reference Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S., & Sefiane, K. (2008). A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323(1–3), 50–55. Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S., & Sefiane, K. (2008). A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323(1–3), 50–55.
go back to reference Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S., & Sefiane, K. (2009). The strong influence of substrate conductivity on droplet evaporation. Journal of Fluid Mechanics., 623, 329–351. Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S., & Sefiane, K. (2009). The strong influence of substrate conductivity on droplet evaporation. Journal of Fluid Mechanics., 623, 329–351.
go back to reference Edwards, A. M. J., Cater, J., Kilbride, J. J., Le Minter, P., Brown, C. V., Fairhurst, D. J., & Ouali, F. F. (2021). Interferometric measurement of co-operative evaporation in 2D droplet arrays. Applied Physics Letters, 119(15), 151601. Edwards, A. M. J., Cater, J., Kilbride, J. J., Le Minter, P., Brown, C. V., Fairhurst, D. J., & Ouali, F. F. (2021). Interferometric measurement of co-operative evaporation in 2D droplet arrays. Applied Physics Letters, 119(15), 151601.
go back to reference Fabrikant, V. I. (1985). On the potential flow through membranes. Zeitschrift für Angewandte Mathematik und Physik, 36(4), 616–623. Fabrikant, V. I. (1985). On the potential flow through membranes. Zeitschrift für Angewandte Mathematik und Physik, 36(4), 616–623.
go back to reference Fomin, S., Watterson, J., Raghunathan, S., & Harkin-Jones, E. (2002). Steady-state rimming flow of the generalised Newtonian fluid. Physics of Fluids, 14(9), 3350–3353. Fomin, S., Watterson, J., Raghunathan, S., & Harkin-Jones, E. (2002). Steady-state rimming flow of the generalised Newtonian fluid. Physics of Fluids, 14(9), 3350–3353.
go back to reference Gelderblom, H., Diddens, C., & Marin, A. (2022). Evaporation-driven liquid flow in sessile droplets. Soft Matter, 18(45), 8535–8553. Gelderblom, H., Diddens, C., & Marin, A. (2022). Evaporation-driven liquid flow in sessile droplets. Soft Matter, 18(45), 8535–8553.
go back to reference Hansen, E. B., & Kelmanson, M. A. (1994). Steady, viscous, free-surface flow on a rotating cylinder. Journal of Fluid Mechanics, 272, 91–107.MathSciNetCrossRefMATH Hansen, E. B., & Kelmanson, M. A. (1994). Steady, viscous, free-surface flow on a rotating cylinder. Journal of Fluid Mechanics, 272, 91–107.MathSciNetCrossRefMATH
go back to reference Holland, D., Duffy, B. R., & Wilson, S. K. (2001). Thermocapillary effects on a thin viscous rivulet draining steadily down a uniformly heated or cooled slowly varying substrate. Journal of Fluid Mechanics, 441, 195–221. Holland, D., Duffy, B. R., & Wilson, S. K. (2001). Thermocapillary effects on a thin viscous rivulet draining steadily down a uniformly heated or cooled slowly varying substrate. Journal of Fluid Mechanics, 441, 195–221.
go back to reference Hosoi, A. E., & Mahadevan, L. (1999). Axial instability of a free-surface front in a partially filled horizontal rotating cylinder. Physics of Fluids, 11(1), 97–106. Hosoi, A. E., & Mahadevan, L. (1999). Axial instability of a free-surface front in a partially filled horizontal rotating cylinder. Physics of Fluids, 11(1), 97–106.
go back to reference Johnson, R. E. (1988). Steady-state coating flows inside a rotating horizontal cylinder. Journal of Fluid Mechanics, 190, 321–342. Johnson, R. E. (1988). Steady-state coating flows inside a rotating horizontal cylinder. Journal of Fluid Mechanics, 190, 321–342.
go back to reference Kelmanson, M. A. (1995). Theoretical and experimental analyses of the maximum-supportable fluid load on a rotating cylinder. Journal of Engineering Mathematics, 29(3), 271–285. Kelmanson, M. A. (1995). Theoretical and experimental analyses of the maximum-supportable fluid load on a rotating cylinder. Journal of Engineering Mathematics, 29(3), 271–285.
go back to reference Larson, R. G. (2014). Transport and deposition patterns in drying sessile droplets. AIChE Journal, 60(5), 1538–1571. Larson, R. G. (2014). Transport and deposition patterns in drying sessile droplets. AIChE Journal, 60(5), 1538–1571.
go back to reference Leslie, G. A., Wilson, S. K., & Duffy, B. R. (2013). Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder. Journal of Fluid Mechanics, 716, 51–82. Leslie, G. A., Wilson, S. K., & Duffy, B. R. (2013). Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder. Journal of Fluid Mechanics, 716, 51–82.
go back to reference Masoud, H., Howell, P. D., & Stone, H. A. (2021). Evaporation of multiple droplets. Journal of Fluid Mechanics, 927, R4. Masoud, H., Howell, P. D., & Stone, H. A. (2021). Evaporation of multiple droplets. Journal of Fluid Mechanics, 927, R4.
go back to reference Melo, F. (1993). Localized states in a film-dragging experiment. Physical Review E, 48(4), 2704–2712. Melo, F. (1993). Localized states in a film-dragging experiment. Physical Review E, 48(4), 2704–2712.
go back to reference Melo, F., & Douady, S. (1993). From solitary waves to static patterns via spatiotemporal intermittency. Physical Review Letters, 71(20), 3283–3286. Melo, F., & Douady, S. (1993). From solitary waves to static patterns via spatiotemporal intermittency. Physical Review Letters, 71(20), 3283–3286.
go back to reference Mitchell, A. J., Duffy, B. R., & Wilson, S. K. (2022). Coating flow on a rotating cylinder in the presence of an irrotational airflow with circulation. Journal of Fluid Mechanics, 932, A33. Mitchell, A. J., Duffy, B. R., & Wilson, S. K. (2022). Coating flow on a rotating cylinder in the presence of an irrotational airflow with circulation. Journal of Fluid Mechanics, 932, A33.
go back to reference Moffatt, H. K. (1977). Behaviour of a viscous film on the outer surface of a rotating cylinder. Journal de mécanique, 16(5), 651–673. Moffatt, H. K. (1977). Behaviour of a viscous film on the outer surface of a rotating cylinder. Journal de mécanique, 16(5), 651–673.
go back to reference Murisic, N., & Kondic, L. (2011). On evaporation of sessile drops with moving contact lines. Journal of Fluid Mechanics, 679, 219–246. Murisic, N., & Kondic, L. (2011). On evaporation of sessile drops with moving contact lines. Journal of Fluid Mechanics, 679, 219–246.
go back to reference Nusselt, W. (1916). Die Oberflächenkondensation des Wasserdampfes. Z. Vereines deutscher Ingenieure, 60, 541–546 (in German). Nusselt, W. (1916). Die Oberflächenkondensation des Wasserdampfes. Z. Vereines deutscher Ingenieure, 60, 541–546 (in German).
go back to reference Nusselt, W. (1916). Die Oberflächenkondensation des Wasserdampfes. Z. Vereines deutscher Ingenieure, 60, 569–575 (in German). Nusselt, W. (1916). Die Oberflächenkondensation des Wasserdampfes. Z. Vereines deutscher Ingenieure, 60, 569–575 (in German).
go back to reference O’Brien, S. B. G. (2002a). Linear stability of rimming flow. Quarterly of Applied Mathematics, 60(2), 201–211. O’Brien, S. B. G. (2002a). Linear stability of rimming flow. Quarterly of Applied Mathematics, 60(2), 201–211.
go back to reference O’Brien, S. B. G. (2002b). A mechanism for linear stability in two-dimensional rimming flow. Quarterly of Applied Mathematics, 60(2), 283–299. O’Brien, S. B. G. (2002b). A mechanism for linear stability in two-dimensional rimming flow. Quarterly of Applied Mathematics, 60(2), 283–299.
go back to reference O’Brien, S. G. B., & Gath, E. G. (1998). The location of a shock in rimming flow. Physics of Fluids, 10(4), 1040–1042. O’Brien, S. G. B., & Gath, E. G. (1998). The location of a shock in rimming flow. Physics of Fluids, 10(4), 1040–1042.
go back to reference Paterson, C., Wilson, S. K., & Duffy, B. R. (2013). Pinning, de-pinning and re-pinning of a slowly varying rivulet. European Journal of Mechanics - B/Fluids, 41, 94–108. Paterson, C., Wilson, S. K., & Duffy, B. R. (2013). Pinning, de-pinning and re-pinning of a slowly varying rivulet. European Journal of Mechanics - B/Fluids, 41, 94–108.
go back to reference Peterson, R. C., Jimack, P. K., & Kelmanson, M. A. (2001). On the stability of viscous, free-surface flow supported by a rotating cylinder. Proceedings of the Royal Society of London. Series A, 457(2010), 1427–1445. Peterson, R. C., Jimack, P. K., & Kelmanson, M. A. (2001). On the stability of viscous, free-surface flow supported by a rotating cylinder. Proceedings of the Royal Society of London. Series A, 457(2010), 1427–1445.
go back to reference Preziosi, L., & Joseph, D. D. (1988). The run-off condition for coating and rimming flows. Journal of Fluid Mechanics, 187, 99–113. Preziosi, L., & Joseph, D. D. (1988). The run-off condition for coating and rimming flows. Journal of Fluid Mechanics, 187, 99–113.
go back to reference Pukhnachev, V. V. (1977). Motion of a liquid film on the surface of a rotating cylinder in a gravitational field. Journal of Applied Mechanics and Technical Physics, 18, 344–351. Pukhnachev, V. V. (1977). Motion of a liquid film on the surface of a rotating cylinder in a gravitational field. Journal of Applied Mechanics and Technical Physics, 18, 344–351.
go back to reference Ross, A. B., Wilson, S. K., & Duffy, B. R. (2001). Thin-film flow of a viscoplastic material round a large horizontal stationary or rotating cylinder. Journal of Fluid Mechanics, 430, 309–333. Ross, A. B., Wilson, S. K., & Duffy, B. R. (2001). Thin-film flow of a viscoplastic material round a large horizontal stationary or rotating cylinder. Journal of Fluid Mechanics, 430, 309–333.
go back to reference Schofield, F. G. H., Wilson, S. K., Pritchard, D., & Sefiane, K. (2018). The lifetimes of evaporating sessile droplets are significantly extended by strong thermal effects. Journal of Fluid Mechanics, 851, 231–244. Schofield, F. G. H., Wilson, S. K., Pritchard, D., & Sefiane, K. (2018). The lifetimes of evaporating sessile droplets are significantly extended by strong thermal effects. Journal of Fluid Mechanics, 851, 231–244.
go back to reference Smith, P. C. (1973). A similarity solution for slow viscous flow down an inclined plane. Journal of Fluid Mechanics, 58(2), 275–288. Smith, P. C. (1973). A similarity solution for slow viscous flow down an inclined plane. Journal of Fluid Mechanics, 58(2), 275–288.
go back to reference Thoroddsen, S. T., & Mahadevan, L. (1997). Experimental study of coating flows in a partially-filled horizontally rotating cylinder. Experiments in Fluids, 23(1), 1–13. Thoroddsen, S. T., & Mahadevan, L. (1997). Experimental study of coating flows in a partially-filled horizontally rotating cylinder. Experiments in Fluids, 23(1), 1–13.
go back to reference Tirumkudulu, M., & Acrivos, A. (2001). Coating flows within a rotating horizontal cylinder: lubrication analysis, numerical computations, and experimental measurements. Physics of Fluids, 13(1), 14–19. Tirumkudulu, M., & Acrivos, A. (2001). Coating flows within a rotating horizontal cylinder: lubrication analysis, numerical computations, and experimental measurements. Physics of Fluids, 13(1), 14–19.
go back to reference Tougher, C. H., Wilson, S. K., & Duffy, B. R. (2009). On the approach to the critical solution in leading order thin-film coating and rimming flow. Applied Mathematics Letters, 22(6), 882–886. Tougher, C. H., Wilson, S. K., & Duffy, B. R. (2009). On the approach to the critical solution in leading order thin-film coating and rimming flow. Applied Mathematics Letters, 22(6), 882–886.
go back to reference Towell, G. D., & Rothfeld, L. B. (1966). Hydrodynamics of rivulet flow. AIChE Journal, 12(5), 972–980. Towell, G. D., & Rothfeld, L. B. (1966). Hydrodynamics of rivulet flow. AIChE Journal, 12(5), 972–980.
go back to reference Vallette, D. P., Edwards, W. S., & Gollub, J. P. (1994). Transition to spatiotemporal chaos via spatially subharmonic oscillations of a periodic front. Physical Review E, 49, R4783–R4786. Vallette, D. P., Edwards, W. S., & Gollub, J. P. (1994). Transition to spatiotemporal chaos via spatially subharmonic oscillations of a periodic front. Physical Review E, 49, R4783–R4786.
go back to reference Vallette, D. P., Jacobs, G., & Gollub, J. P. (1997). Oscillations and spatiotemporal chaos of one-dimensional fluid fronts. Physical Review E, 55, 4274–4287. Vallette, D. P., Jacobs, G., & Gollub, J. P. (1997). Oscillations and spatiotemporal chaos of one-dimensional fluid fronts. Physical Review E, 55, 4274–4287.
go back to reference Wilson, S. D. R., & Burgess, S. L. (1998). The steady, spreading flow of a rivulet of mud. Journal of Non-Newtonian Fluid Mechanics, 79(1), 79–85. Wilson, S. D. R., & Burgess, S. L. (1998). The steady, spreading flow of a rivulet of mud. Journal of Non-Newtonian Fluid Mechanics, 79(1), 79–85.
go back to reference Wilson, S. K., & D’Ambrosio, H.-M. (2023). Evaporation of sessile droplets. Annual Review of Fluid Mechanics, 55, 481–509. Wilson, S. K., & D’Ambrosio, H.-M. (2023). Evaporation of sessile droplets. Annual Review of Fluid Mechanics, 55, 481–509.
go back to reference Wilson, S. K., & Duffy, B. R. (1998). On the gravity-driven draining of a rivulet of viscous fluid down a slowly varying substrate with variation transverse to the direction of flow. Physics of Fluids, 10(1), 13–22. Wilson, S. K., & Duffy, B. R. (1998). On the gravity-driven draining of a rivulet of viscous fluid down a slowly varying substrate with variation transverse to the direction of flow. Physics of Fluids, 10(1), 13–22.
go back to reference Wilson, S. K., & Duffy, B. R. (2002). On the gravity-driven draining of a rivulet of fluid with temperature-dependent viscosity down a uniformly heated or cooled substrate. Journal of Engineering Mathematics, 42(3–4), 359–372. Wilson, S. K., & Duffy, B. R. (2002). On the gravity-driven draining of a rivulet of fluid with temperature-dependent viscosity down a uniformly heated or cooled substrate. Journal of Engineering Mathematics, 42(3–4), 359–372.
go back to reference Wilson, S. K., & Duffy, B. R. (2003). Strong temperature-dependent-viscosity effects on a rivulet draining down a uniformly heated or cooled slowly varying substrate. Physics of Fluids, 15(4), 827–840. Wilson, S. K., & Duffy, B. R. (2003). Strong temperature-dependent-viscosity effects on a rivulet draining down a uniformly heated or cooled slowly varying substrate. Physics of Fluids, 15(4), 827–840.
go back to reference Wilson, S. K., & Duffy, B. R. (2005). A rivulet of perfectly wetting fluid draining steadily down a slowly varying substrate. IMA Journal of Applied Mathematics, 70(2), 293–322. Wilson, S. K., & Duffy, B. R. (2005). A rivulet of perfectly wetting fluid draining steadily down a slowly varying substrate. IMA Journal of Applied Mathematics, 70(2), 293–322.
go back to reference Wilson, S. K., & Duffy, B. R. (2022). Mathematical models for the evaporation of sessile droplets. Chapter 4 in Drying of Complex Fluid Drops: Fundamentals and Applications, eds. by D. Brutin & K. Sefiane (pp. 47–67). Soft Matter Series No. 14, Royal Society of Chemistry. Wilson, S. K., & Duffy, B. R. (2022). Mathematical models for the evaporation of sessile droplets. Chapter 4 in Drying of Complex Fluid Drops: Fundamentals and Applications, eds. by D. Brutin & K. Sefiane (pp. 47–67). Soft Matter Series No. 14, Royal Society of Chemistry.
go back to reference Wilson, S. D. R., & Williams, J. (1997). The flow of a liquid film on the inside of a rotating cylinder, and some related problems. Physics of Fluids, 9(8), 2184–2190. Wilson, S. D. R., & Williams, J. (1997). The flow of a liquid film on the inside of a rotating cylinder, and some related problems. Physics of Fluids, 9(8), 2184–2190.
go back to reference Wilson, S. K., Duffy, B. R., & Davis, S. H. (2001). On a slender dry patch in a liquid film draining under gravity down an inclined plane. European Journal of Applied Mathematics, 12(3), 233–252. Wilson, S. K., Duffy, B. R., & Davis, S. H. (2001). On a slender dry patch in a liquid film draining under gravity down an inclined plane. European Journal of Applied Mathematics, 12(3), 233–252.
go back to reference Wilson, S. K., Duffy, B. R., & Hunt, R. (2002). A slender rivulet of a power-law fluid driven by either gravity or a constant shear stress at the free surface. The Quarterly Journal of Mechanics and Applied Mathematics, 55(3), 385–408. Wilson, S. K., Duffy, B. R., & Hunt, R. (2002). A slender rivulet of a power-law fluid driven by either gravity or a constant shear stress at the free surface. The Quarterly Journal of Mechanics and Applied Mathematics, 55(3), 385–408.
go back to reference Wilson, S. K., Duffy, B. R., & Ross, A. B. (2002). On the gravity-driven draining of a rivulet of viscoplastic material down a slowly varying substrate. Physics of Fluids, 14(2), 555–571. Wilson, S. K., Duffy, B. R., & Ross, A. B. (2002). On the gravity-driven draining of a rivulet of viscoplastic material down a slowly varying substrate. Physics of Fluids, 14(2), 555–571.
go back to reference Wilson, S. K., Hunt, R., & Duffy, B. R. (2002). On the critical solutions in coating and rimming flow on a uniformly rotating horizontal cylinder. The Quarterly Journal of Mechanics and Applied Mathematics, 55(3), 357–383. Wilson, S. K., Hunt, R., & Duffy, B. R. (2002). On the critical solutions in coating and rimming flow on a uniformly rotating horizontal cylinder. The Quarterly Journal of Mechanics and Applied Mathematics, 55(3), 357–383.
go back to reference Wilson, S. K., Sullivan, J. M., & Duffy, B. R. (2011). The energetics of the breakup of a sheet and of a rivulet on a vertical substrate in the presence of a uniform surface shear stress. Journal of Fluid Mechanics, 674, 281–306. Wilson, S. K., Sullivan, J. M., & Duffy, B. R. (2011). The energetics of the breakup of a sheet and of a rivulet on a vertical substrate in the presence of a uniform surface shear stress. Journal of Fluid Mechanics, 674, 281–306.
go back to reference Wray, A. W., Duffy, B. R., & Wilson, S. K. (2020). Competitive evaporation of multiple sessile droplets. Journal of Fluid Mechanics, 884, A45. Wray, A. W., Duffy, B. R., & Wilson, S. K. (2020). Competitive evaporation of multiple sessile droplets. Journal of Fluid Mechanics, 884, A45.
go back to reference Wray, A. W., Wray, P. S., Duffy, B. R., & Wilson, S. K. (2021). Contact-line deposits from multiple evaporating droplets. Physical Review Fluids, 6(7), 073604. Wray, A. W., Wray, P. S., Duffy, B. R., & Wilson, S. K. (2021). Contact-line deposits from multiple evaporating droplets. Physical Review Fluids, 6(7), 073604.
go back to reference Yang, X., Jiang, Z., Lyu, P., Ding, Z., & Man, X. (2021). Deposition pattern of drying droplets. Communications in Theoretical Physics, 73(4), 047601. Yang, X., Jiang, Z., Lyu, P., Ding, Z., & Man, X. (2021). Deposition pattern of drying droplets. Communications in Theoretical Physics, 73(4), 047601.
go back to reference Yatim, Y. M., Duffy, B. R., & Wilson, S. K. (2012). Similarity solutions for unsteady shear-stress-driven flow of Newtonian and power-law fluids: slender rivulets and dry patches. Journal of Engineering Mathematics, 73(1), 53–69. Yatim, Y. M., Duffy, B. R., & Wilson, S. K. (2012). Similarity solutions for unsteady shear-stress-driven flow of Newtonian and power-law fluids: slender rivulets and dry patches. Journal of Engineering Mathematics, 73(1), 53–69.
go back to reference Yatim, Y. M., Duffy, B. R., Wilson, S. K., & Hunt, R. (2011). Similarity solutions for unsteady gravity-driven slender rivulets. The Quarterly Journal of Mechanics and Applied Mathematics, 64(4), 455–480. Yatim, Y. M., Duffy, B. R., Wilson, S. K., & Hunt, R. (2011). Similarity solutions for unsteady gravity-driven slender rivulets. The Quarterly Journal of Mechanics and Applied Mathematics, 64(4), 455–480.
go back to reference Zang, D., Tarafdar, S., Yu Tarasevich, Y., Choudhury, M. D., & Dutta, T. (2019). Evaporation of a droplet: from physics to applications. Physics Reports, 804, 1–56. Zang, D., Tarafdar, S., Yu Tarasevich, Y., Choudhury, M. D., & Dutta, T. (2019). Evaporation of a droplet: from physics to applications. Physics Reports, 804, 1–56.
Metadata
Title
Coating and Rimming Flow, Rivulet Flow, and the Evaporation of a Sessile Droplet
Author
Stephen K. Wilson
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78764-5_6

Premium Partners