Skip to main content
Top
Published in:

28-09-2023

CoDeS: A Deep Learning Framework for Identifying COVID-Caused Depression Symptoms

Authors: Mudasir Ahmad Wani, Mohammad ELAffendi, Patrick Bours, Ali Shariq Imran, Amir Hussain, Ahmed A. Abd El-Latif

Published in: Cognitive Computation | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Depression is a serious mental health condition that affects a person’s ability to feel happy and engaged in activities. The COVID-19 pandemic has led to an increase in depression due to factors such as isolation, financial stress, and uncertainty about the future. Additionally, restrictions on travel and socializing have contributed to feelings of loneliness and isolation. In this research, we present a deep learning framework named CoDeS (COVID-caused depression symptoms) for detecting prodromes of depression in online users caused due to COVID pandemic. This framework uses a combination of CNN, LSTM, and integrated CNN-LSTM techniques, with three different feature representation methods, viz. Word2Vec, TF-IDF, and BERT. Nine experiments were conducted on individual and integrated models, and the results were evaluated based on the accuracy, precision, recall, F1-score, and Matthews correlation coefficient (MCC) performance metric. The highest accuracy value of 98.95% was recorded for the TF-IDF-based integrated CNN+LSTM model. When the same integrated model was trained using Word2Vec and BERT-based features, it still performed well with an accuracy of 97.32% and 98.51% respectively. The results demonstrate that the TF-IDF-based feature representation performed better than the Word2Vec and BERT-based feature representations for the CNN and LSTM models in identifying COVID-caused depression symptoms. The proposed approaches showcased substantial advancements over the existing ones, with significant improvements in accuracy. TF-IDF-CNN+LSTM achieved an accuracy approximately 37.28% higher, while BERT-CNN, BERT-LSTM, and BERT-CNN+LSTM achieved accuracy enhancements of approximately 29.78%, 34.44%, and 27.14% respectively. These accuracy improvements demonstrate the superior classification capabilities of the proposed approaches, leading to more precise depression analysis outcomes. In terms of F1 measure, the proposed approaches consistently demonstrated superior performance, with F1 measure values ranging from 0.965 to 0.987. BERT-CNN+LSTM achieved the highest F1 measure, highlighting its balanced precision and recall. Overall, the proposed approaches outperformed existing ones in terms of recall, precision, accuracy, and F1 measure, with improvements ranging from 27.14 to 44.85%. By incorporating advanced techniques such as TF-IDF, CNN, LSTM, and BERT, more accurate and reliable sentiment analysis outcomes can be achieved, offering the potential for enhanced applications in this field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Azmi FM, Khan HN, Azmi AM, Yaswi A, Jakovljevic M. Prevalence of COVID-19 pandemic, self-esteem and its effect on depression among university students in Saudi Arabia. Front Public Health. 2022;10:3.CrossRef Azmi FM, Khan HN, Azmi AM, Yaswi A, Jakovljevic M. Prevalence of COVID-19 pandemic, self-esteem and its effect on depression among university students in Saudi Arabia. Front Public Health. 2022;10:3.CrossRef
3.
go back to reference Al-Hakeim HK, Al-Fadhel SZ, Al-Dujaili AH, Carvalho A, Sriswasdi S, Maes M. Development of a novel neuro-immune and opioid-associated fingerprint with a cross-validated ability to identify and authenticate unknown patients with major depression: far beyond differentiation, discrimination, and classification. Mol Neurobiol. 2019;56(11):7822–35.CrossRef Al-Hakeim HK, Al-Fadhel SZ, Al-Dujaili AH, Carvalho A, Sriswasdi S, Maes M. Development of a novel neuro-immune and opioid-associated fingerprint with a cross-validated ability to identify and authenticate unknown patients with major depression: far beyond differentiation, discrimination, and classification. Mol Neurobiol. 2019;56(11):7822–35.CrossRef
4.
go back to reference World Health Organization. 2020. Depression, key facts. World Health Organization (WHO); 2020. World Health Organization. 2020. Depression, key facts. World Health Organization (WHO); 2020.
5.
go back to reference Saba T, Khan AR, Abunadi I, Bahaj SA, Ali H, Alruwaythi M. Arabic speech analysis for classification and prediction of mental illness due to depression using deep learning. Comput Intell Neurosci. 2022;2022. Saba T, Khan AR, Abunadi I, Bahaj SA, Ali H, Alruwaythi M. Arabic speech analysis for classification and prediction of mental illness due to depression using deep learning. Comput Intell Neurosci. 2022;2022.
6.
go back to reference Durkheim E. Suicide: a study in sociology. Routledge; 2005. Durkheim E. Suicide: a study in sociology. Routledge; 2005.
7.
go back to reference Adhikari S, Thapa S, Naseem U, Singh P, Huo H, Bharathy G, Prasad M. Exploiting linguistic information from Nepali transcripts for early detection of Alzheimer’s disease using natural language processing and machine learning techniques. Int J Hum Comput Stud. 2022;160. Adhikari S, Thapa S, Naseem U, Singh P, Huo H, Bharathy G, Prasad M. Exploiting linguistic information from Nepali transcripts for early detection of Alzheimer’s disease using natural language processing and machine learning techniques. Int J Hum Comput Stud. 2022;160.
8.
go back to reference Rude S, Gortner E-M, Pennebaker J. Language use of depressed and depression-vulnerable college students. Cognit Emot. 2004;18(8):1121–33.CrossRef Rude S, Gortner E-M, Pennebaker J. Language use of depressed and depression-vulnerable college students. Cognit Emot. 2004;18(8):1121–33.CrossRef
9.
go back to reference Ni MY, Yang L, Leung CM, Li N, Yao XI, Wang Y, Leung GM, Cowling BJ, Liao Q. Mental health, risk factors, and social media use during the COVID-19 epidemic and cordon sanitaire among the community and health professionals in Wuhan, China: cross-sectional survey. JMIR Ment Health. 2020;7(5):e19009.CrossRef Ni MY, Yang L, Leung CM, Li N, Yao XI, Wang Y, Leung GM, Cowling BJ, Liao Q. Mental health, risk factors, and social media use during the COVID-19 epidemic and cordon sanitaire among the community and health professionals in Wuhan, China: cross-sectional survey. JMIR Ment Health. 2020;7(5):e19009.CrossRef
10.
go back to reference Alghowinem S, Goecke R, Wagner M, Epps J, Hyett M, Parker G, Breakspear M. Multimodal depression detection: fusion analysis of paralinguistic, head pose and eye gaze behaviors. IEEE Trans Affect Comput. 2018;9(4):478–90.CrossRef Alghowinem S, Goecke R, Wagner M, Epps J, Hyett M, Parker G, Breakspear M. Multimodal depression detection: fusion analysis of paralinguistic, head pose and eye gaze behaviors. IEEE Trans Affect Comput. 2018;9(4):478–90.CrossRef
11.
go back to reference Wang X, Zhang C, Ji Y, Sun L, Wu L, Bao Z. A depression detection model based on sentiment analysis in micro-blog social network. In: Trends and Applications in Knowledge Discovery and Data Mining: PAKDD 2013 International Workshops: DMApps, DANTH, QIMIE, BDM, CDA, CloudSD, Gold Coast, QLD, Australia, April 14–17, 2013, Revised Selected Papers 17. Springer; 2013. p. 201–13. Wang X, Zhang C, Ji Y, Sun L, Wu L, Bao Z. A depression detection model based on sentiment analysis in micro-blog social network. In: Trends and Applications in Knowledge Discovery and Data Mining: PAKDD 2013 International Workshops: DMApps, DANTH, QIMIE, BDM, CDA, CloudSD, Gold Coast, QLD, Australia, April 14–17, 2013, Revised Selected Papers 17. Springer; 2013. p. 201–13.
12.
go back to reference Ghosh S, Ekbal A, Bhattacharyya P. A multitask framework to detect depression, sentiment and multi-label emotion from suicide notes. Cogn Comput. 2022;14(1):110–29.CrossRef Ghosh S, Ekbal A, Bhattacharyya P. A multitask framework to detect depression, sentiment and multi-label emotion from suicide notes. Cogn Comput. 2022;14(1):110–29.CrossRef
13.
go back to reference Shen G, Jia J, Nie L, Feng F, Zhang C, Hu T, Chua T-S, Zhu W, et al. Depression detection via harvesting social media: a multimodal dictionary learning solution. In: IJCAI. 2017. p. 3838–44. Shen G, Jia J, Nie L, Feng F, Zhang C, Hu T, Chua T-S, Zhu W, et al. Depression detection via harvesting social media: a multimodal dictionary learning solution. In: IJCAI. 2017. p. 3838–44.
14.
go back to reference Aloshban N, Esposito A, Vinciarelli A. What you say or how you say it? Depression detection through joint modeling of linguistic and acoustic aspects of speech. Cogn Comput. 2021;1–14. Aloshban N, Esposito A, Vinciarelli A. What you say or how you say it? Depression detection through joint modeling of linguistic and acoustic aspects of speech. Cogn Comput. 2021;1–14.
15.
go back to reference Wani MA, ELAffendi MA, Shakil KA, Imran AS, Abd El-Latif AA. Depression screening in humans with AI and deep learning techniques. IEEE Trans Comput Soc Syst. 2022. Wani MA, ELAffendi MA, Shakil KA, Imran AS, Abd El-Latif AA. Depression screening in humans with AI and deep learning techniques. IEEE Trans Comput Soc Syst. 2022.
16.
go back to reference Zhou J, Zogan H, Yang S, Jameel S, Xu G, Chen F. Detecting community depression dynamics due to COVID-19 pandemic in Australia. IEEE Trans Comput Soc Syst. 2021;8(4):982–91.CrossRef Zhou J, Zogan H, Yang S, Jameel S, Xu G, Chen F. Detecting community depression dynamics due to COVID-19 pandemic in Australia. IEEE Trans Comput Soc Syst. 2021;8(4):982–91.CrossRef
17.
go back to reference Alghamdi NS, Mahmoud HAH, Abraham A, Alanazi SA, García-Hernández L. Predicting depression symptoms in an Arabic psychological forum. IEEE Access. 2020;8:57317–34. Alghamdi NS, Mahmoud HAH, Abraham A, Alanazi SA, García-Hernández L. Predicting depression symptoms in an Arabic psychological forum. IEEE Access. 2020;8:57317–34.
19.
go back to reference Naseem U, Razzak I, Khushi M, Eklund PW, Kim J. COVIDsenti: a large-scale benchmark twitter data set for COVID-19 sentiment analysis. IEEE Trans Comput Soc Syst. 2021. Naseem U, Razzak I, Khushi M, Eklund PW, Kim J. COVIDsenti: a large-scale benchmark twitter data set for COVID-19 sentiment analysis. IEEE Trans Comput Soc Syst. 2021.
21.
go back to reference Miglani A. Coronavirus tweets NLP-text classification. 2020. Miglani A. Coronavirus tweets NLP-text classification. 2020.
22.
go back to reference Pereira RM, Costa YM, Silla CN Jr. MLTL: a multi-label approach for the Tomek link undersampling algorithm. Neurocomputing. 2020;383:95–105.CrossRef Pereira RM, Costa YM, Silla CN Jr. MLTL: a multi-label approach for the Tomek link undersampling algorithm. Neurocomputing. 2020;383:95–105.CrossRef
23.
go back to reference Wani MA, Agarwal N, Jabin S, Hussain SZ. User emotion analysis in conflicting versus non-conflicting regions using online social networks. Telematics Inform. 2018;35(8):2326–36.CrossRef Wani MA, Agarwal N, Jabin S, Hussain SZ. User emotion analysis in conflicting versus non-conflicting regions using online social networks. Telematics Inform. 2018;35(8):2326–36.CrossRef
25.
go back to reference Verdonck T, Baesens B, Óskarsdóttir M, et al. Special issue on feature engineering editorial. Mach Learn. 2021;1–12. Verdonck T, Baesens B, Óskarsdóttir M, et al. Special issue on feature engineering editorial. Mach Learn. 2021;1–12.
27.
go back to reference Zheng A, Casari A. Feature engineering for machine learning: principles and techniques for data scientists. O’Reilly Media, Inc.; 2018. Zheng A, Casari A. Feature engineering for machine learning: principles and techniques for data scientists. O’Reilly Media, Inc.; 2018.
28.
go back to reference Aizawa A. An information-theoretic perspective of TF-IDF measures. Inf Process Manag. 2003;39(1):45–65.CrossRef Aizawa A. An information-theoretic perspective of TF-IDF measures. Inf Process Manag. 2003;39(1):45–65.CrossRef
30.
go back to reference Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 [Preprint]. 2018. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:​1810.​04805 [Preprint]. 2018.
31.
go back to reference Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv:1301.3781 [Preprint]. 2013. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv:​1301.​3781 [Preprint]. 2013.
33.
go back to reference Bird S. NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions. 2006. p. 69–72. Bird S. NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions. 2006. p. 69–72.
34.
go back to reference Wang T, Brede M, Ianni A, Mentzakis E. Detecting and characterizing eating-disorder communities on social media. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. 2017. p. 91–100. Wang T, Brede M, Ianni A, Mentzakis E. Detecting and characterizing eating-disorder communities on social media. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. 2017. p. 91–100.
Metadata
Title
CoDeS: A Deep Learning Framework for Identifying COVID-Caused Depression Symptoms
Authors
Mudasir Ahmad Wani
Mohammad ELAffendi
Patrick Bours
Ali Shariq Imran
Amir Hussain
Ahmed A. Abd El-Latif
Publication date
28-09-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 1/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10190-z

Premium Partner