Skip to main content
Top
Published in:

16-10-2023

Cognitively-Inspired Multi-Scale Spectral-Spatial Transformer for Hyperspectral Image Super-Resolution

Authors: Qin Xu, Shiji Liu, Jinpei Liu, Bin Luo

Published in: Cognitive Computation | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hyperspectral image (HSI) super-resolution (SR) without auxiliary high-resolution images is a challenging task in computer vision applications. The existing methods almost resort to the deep convolutional neural networks of fixed geometrical kernel, which can not model the long-range dependencies and does not conform to the human visual cognition. To address this issue, we propose the cognitively-inspired multi-scale spectral-spatial transformer for HSI SR. To solve the problem of high storage and computation burden, the overlapped band grouping strategy is adopted in light of high similarity between neighboring spectral bands of HSI. Considering the different textures and details that appear in HSIs, inspired by the human cognitive mechanism, the multi-scale spatial and spectral transformer blocks are developed which can efficiently and effectively learn the spatial and spectral feature representation at different scales and long-range dependencies of features. Finally, to fuse the feature information of neighboring groups, the 2D convolution mixed with 3D separable convolution is designed, which fully explores the complementarity and continuity of spatial and spectral information. Extensive experiments conducted on three benchmark datasets demonstrate that the proposed method yields state-of-the-art results at different scales. The effectiveness of the proposed method is verified through spatial and spectral dimension data visualization and ablation experiments. The code and models are publicly available at https://​github.​com/​liushiji666/​MMSSTN. The experimental results prove the effectiveness of our proposed method, which largely overcomes the disadvantage that convolution is ineffective for long-range dependence modeling. The method performs long-range dependence modeling on both spatial and spectral features and efficiently mines complementary information between bands, thereby enhancing the model’s high perceptual ability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nixon M, Aguado A. Feature extraction and image processing for computer vision. Elsevier, Southampton; 2019. pp. 1–605. Nixon M, Aguado A. Feature extraction and image processing for computer vision. Elsevier, Southampton; 2019. pp. 1–605.
2.
go back to reference Hassan MY, Khalifa OO, Abdalla AH. Neuroscience-inspired artificial vision feature parallelism and deep learning models, a comparative study ii depth. J Asian Sci Res. 2019;9(9):127–39. Hassan MY, Khalifa OO, Abdalla AH. Neuroscience-inspired artificial vision feature parallelism and deep learning models, a comparative study ii depth. J Asian Sci Res. 2019;9(9):127–39.
3.
go back to reference Shukla A, Merugu S, Jain K. A technical review on image super-resolution techniques. Springer, Singapore; 2020. pp. 543–565. Shukla A, Merugu S, Jain K. A technical review on image super-resolution techniques. Springer, Singapore; 2020. pp. 543–565.
4.
go back to reference Dmitriev EV, Kozoderov V, Dementyev A, Safonova A. Combining classifiers in the problem of thematic processing of hyperspectral aerospace images. Optoelectronics Instrum Data Process. 2018;54:213–21.CrossRef Dmitriev EV, Kozoderov V, Dementyev A, Safonova A. Combining classifiers in the problem of thematic processing of hyperspectral aerospace images. Optoelectronics Instrum Data Process. 2018;54:213–21.CrossRef
5.
go back to reference Sahadevan AS. Extraction of spatial-spectral homogeneous patches and fractional abundances for field-scale agriculture monitoring using airborne hyperspectral images. Comput Electron Agric. 2021;188:106325.CrossRef Sahadevan AS. Extraction of spatial-spectral homogeneous patches and fractional abundances for field-scale agriculture monitoring using airborne hyperspectral images. Comput Electron Agric. 2021;188:106325.CrossRef
6.
go back to reference Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol. 2007;18(12):590–8.CrossRef Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol. 2007;18(12):590–8.CrossRef
7.
go back to reference Liu Z, Wang H, Li Q. Tongue tumor detection in medical hyperspectral images. Sensors. 2012;12(1):162–74.CrossRef Liu Z, Wang H, Li Q. Tongue tumor detection in medical hyperspectral images. Sensors. 2012;12(1):162–74.CrossRef
8.
go back to reference Siu W-C, Hung K-W. Review of image interpolation and super-resolution. In: Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference. IEEE, Hollywood; 2012. pp. 1–10. Siu W-C, Hung K-W. Review of image interpolation and super-resolution. In: Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference. IEEE, Hollywood; 2012. pp. 1–10.
9.
go back to reference Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections. J Opt Soc Am A. 1989;6(11):1715–26.CrossRef Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections. J Opt Soc Am A. 1989;6(11):1715–26.CrossRef
10.
go back to reference Wu W, Yang X, Liu K, Liu Y, Yan B, Hua H. A new framework for remote sensing image super-resolution: sparse representation-based method by processing dictionaries with multi-type features. J Syst Archit. 2016;64:63–75 Wu W, Yang X, Liu K, Liu Y, Yan B, Hua H. A new framework for remote sensing image super-resolution: sparse representation-based method by processing dictionaries with multi-type features. J Syst Archit. 2016;64:63–75
11.
go back to reference Perconti P, Plebe A. Deep learning and cognitive science. Cognition. 2020;203:104365.CrossRef Perconti P, Plebe A. Deep learning and cognitive science. Cognition. 2020;203:104365.CrossRef
12.
go back to reference Dong C, Loy CC, He K, Tang X. Learning a deep convolutional network for image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, Cham; 2014. pp. 184–199. Dong C, Loy CC, He K, Tang X. Learning a deep convolutional network for image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, Cham; 2014. pp. 184–199.
13.
go back to reference Jiang K, Wang Z, Yi P, Jiang J. Hierarchical dense recursive network for image super-resolution. Pattern Recogn. 2020;107:107475.CrossRef Jiang K, Wang Z, Yi P, Jiang J. Hierarchical dense recursive network for image super-resolution. Pattern Recogn. 2020;107:107475.CrossRef
14.
go back to reference Marblestone AH, Wayne G, Kording KP. Toward an integration of deep learning and neuroscience. Front Comput Neurosci. 2016;10:94.CrossRef Marblestone AH, Wayne G, Kording KP. Toward an integration of deep learning and neuroscience. Front Comput Neurosci. 2016;10:94.CrossRef
15.
go back to reference Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y. Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, Munich; 2018. pp. 286–301. Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y. Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, Munich; 2018. pp. 286–301.
16.
go back to reference Chen S-B, Hu C, Luo B, Ding CHQ, Huang S-L. Pyramid attention dense network for image super-resolution. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, Budapest; 2019. pp. 1–8. Chen S-B, Hu C, Luo B, Ding CHQ, Huang S-L. Pyramid attention dense network for image super-resolution. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, Budapest; 2019. pp. 1–8.
17.
go back to reference Liu H, Diao X, Guo H. Image super-resolution reconstruction: a granular computing approach from the viewpoint of cognitive psychology. Sens Imaging. 2019;20:1–19.CrossRef Liu H, Diao X, Guo H. Image super-resolution reconstruction: a granular computing approach from the viewpoint of cognitive psychology. Sens Imaging. 2019;20:1–19.CrossRef
18.
go back to reference Daihong J, Sai Z, Lei D, Yueming D. Multi-scale generative adversarial network for image super-resolution. Soft Comput. 2022;26(8):3631–41.CrossRef Daihong J, Sai Z, Lei D, Yueming D. Multi-scale generative adversarial network for image super-resolution. Soft Comput. 2022;26(8):3631–41.CrossRef
19.
go back to reference Dian R, Li S, Fang L. Learning a low tensor-train rank representation for hyperspectral image super-resolution. IEEE Trans Neural Netw Learn Syst. 2019;30(9):2672–83.MathSciNetCrossRef Dian R, Li S, Fang L. Learning a low tensor-train rank representation for hyperspectral image super-resolution. IEEE Trans Neural Netw Learn Syst. 2019;30(9):2672–83.MathSciNetCrossRef
20.
go back to reference Wei Q, Dobigeon N, Tourneret J-Y. Bayesian fusion of multi-band images. IEEE J Sel Top Signal Process. 2015;9(6):1117–27.CrossRef Wei Q, Dobigeon N, Tourneret J-Y. Bayesian fusion of multi-band images. IEEE J Sel Top Signal Process. 2015;9(6):1117–27.CrossRef
21.
go back to reference Zou C, Xia Y. Bayesian dictionary learning for hyperspectral image super resolution in mixed Poisson-Gaussian noise. Signal Process Image Commun. 2018;60:29–41.CrossRef Zou C, Xia Y. Bayesian dictionary learning for hyperspectral image super resolution in mixed Poisson-Gaussian noise. Signal Process Image Commun. 2018;60:29–41.CrossRef
22.
go back to reference Zhao Y, Yang J, Zhang Q, Song L, Cheng Y, Pan Q. Hyperspectral imagery super-resolution by sparse representation and spectral regularization. EURASIP J Adv Signal Process. 2011;2011(1):1–10.CrossRef Zhao Y, Yang J, Zhang Q, Song L, Cheng Y, Pan Q. Hyperspectral imagery super-resolution by sparse representation and spectral regularization. EURASIP J Adv Signal Process. 2011;2011(1):1–10.CrossRef
23.
go back to reference Akhtar N, Shafait F, Mian A. Sparse spatio-spectral representation for hyperspectral image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, Cham; 2014. pp. 63–78. Akhtar N, Shafait F, Mian A. Sparse spatio-spectral representation for hyperspectral image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV). Springer, Cham; 2014. pp. 63–78.
24.
go back to reference Long J, Peng Y, Li J, Zhang L, Xu Y. Hyperspectral image super-resolution via subspace-based fast low tensor multi-rank regularization. Infrared Phys Technol. 2021;116:103631.CrossRef Long J, Peng Y, Li J, Zhang L, Xu Y. Hyperspectral image super-resolution via subspace-based fast low tensor multi-rank regularization. Infrared Phys Technol. 2021;116:103631.CrossRef
25.
go back to reference Liu N, Li W, Wang Y, Tao R, Du Q, Chanussot J. A survey on hyperspectral image restoration: from the view of low-rank tensor approximation. SCIENCE CHINA Inf Sci. 2023;66(4):1–31.MathSciNetCrossRef Liu N, Li W, Wang Y, Tao R, Du Q, Chanussot J. A survey on hyperspectral image restoration: from the view of low-rank tensor approximation. SCIENCE CHINA Inf Sci. 2023;66(4):1–31.MathSciNetCrossRef
26.
go back to reference Hu J-F, Huang T-Z, Deng L-J, Jiang T-X, Vivone G, Chanussot J. Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks. IEEE Trans Neural Netw Learn Syst. 2022;33(12):7251–65.CrossRef Hu J-F, Huang T-Z, Deng L-J, Jiang T-X, Vivone G, Chanussot J. Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks. IEEE Trans Neural Netw Learn Syst. 2022;33(12):7251–65.CrossRef
27.
go back to reference Hu J-F, Huang T-Z, Deng L-J, Dou H-X, Hong D, Vivone G. Fusformer: a transformer-based fusion network for hyperspectral image super-resolution. IEEE Geosci Remote Sens Lett. 2022;19:1–5. Hu J-F, Huang T-Z, Deng L-J, Dou H-X, Hong D, Vivone G. Fusformer: a transformer-based fusion network for hyperspectral image super-resolution. IEEE Geosci Remote Sens Lett. 2022;19:1–5.
28.
go back to reference Huang H, Yu J, Sun W. Super-resolution mapping via multi-dictionary based sparse representation. In: 2014 IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP). Florence: IEEE; 2014. p. 3523–7. Huang H, Yu J, Sun W. Super-resolution mapping via multi-dictionary based sparse representation. In: 2014 IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP). Florence: IEEE; 2014. p. 3523–7.
29.
go back to reference Long J, Peng Y, Li J, Zhang L, Xu Y. Hyperspectral image super-resolution via subspace-based fast low tensor multi-rank regularization. Infrared Phys Technol. 2021;116:103631.CrossRef Long J, Peng Y, Li J, Zhang L, Xu Y. Hyperspectral image super-resolution via subspace-based fast low tensor multi-rank regularization. Infrared Phys Technol. 2021;116:103631.CrossRef
30.
go back to reference Liu C, Dong Y. CNN-enhanced graph attention network for hyperspectral image super-resolution using non-local self-similarity. Int J Remote Sens. 2022;43(13):4810–35.CrossRef Liu C, Dong Y. CNN-enhanced graph attention network for hyperspectral image super-resolution using non-local self-similarity. Int J Remote Sens. 2022;43(13):4810–35.CrossRef
31.
go back to reference Hu J, Li Y, Xie W. Hyperspectral image super-resolution by spectral difference learning and spatial error correction. IEEE Geosci Remote Sens Lett. 2017;14(10):1825–9.CrossRef Hu J, Li Y, Xie W. Hyperspectral image super-resolution by spectral difference learning and spatial error correction. IEEE Geosci Remote Sens Lett. 2017;14(10):1825–9.CrossRef
32.
go back to reference Li, Y., Zhang, L., Dingl, C., Wei, W., Zhang, Y.: Single hyperspectral image super-resolution with grouped deep recursive residual network. In: 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). IEEE, Xi’an; 2018. pp. 1–4. Li, Y., Zhang, L., Dingl, C., Wei, W., Zhang, Y.: Single hyperspectral image super-resolution with grouped deep recursive residual network. In: 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). IEEE, Xi’an; 2018. pp. 1–4.
33.
go back to reference Jiang J, Sun H, Liu X, Ma J. Learning spatial-spectral prior for super-resolution of hyperspectral imagery. IEEE Trans Comput Imaging. 2020;6:1082–96.CrossRef Jiang J, Sun H, Liu X, Ma J. Learning spatial-spectral prior for super-resolution of hyperspectral imagery. IEEE Trans Comput Imaging. 2020;6:1082–96.CrossRef
34.
go back to reference Wang X, Ma J, Jiang J. Hyperspectral image super-resolution via recurrent feedback embedding and spatial-spectral consistency regularization. IEEE Trans Geosci Remote Sens. 2022;60:5503113. Wang X, Ma J, Jiang J. Hyperspectral image super-resolution via recurrent feedback embedding and spatial-spectral consistency regularization. IEEE Trans Geosci Remote Sens. 2022;60:5503113.
35.
go back to reference Mei S, Yuan X, Ji J, Zhang Y, Wan S, Du Q. Hyperspectral image spatial super-resolution via 3D full convolutional neural network. Remote Sens. 2017;9(11). Mei S, Yuan X, Ji J, Zhang Y, Wan S, Du Q. Hyperspectral image spatial super-resolution via 3D full convolutional neural network. Remote Sens. 2017;9(11).
36.
go back to reference Hu J, Tang Y, Fan S. Hyperspectral image super resolution based on multiscale feature fusion and aggregation network with 3-D convolution. IEEE J Sel Topics Appl Earth Obs Remote Sens. 2020;13:5180–93.CrossRef Hu J, Tang Y, Fan S. Hyperspectral image super resolution based on multiscale feature fusion and aggregation network with 3-D convolution. IEEE J Sel Topics Appl Earth Obs Remote Sens. 2020;13:5180–93.CrossRef
37.
go back to reference Hu J, Tang Y, Liu Y, Fan S. Hyperspectral image super-resolution based on multiscale mixed attention network fusion. IEEE Geosci Remote Sens Lett. 2022;19:5511450. Hu J, Tang Y, Liu Y, Fan S. Hyperspectral image super-resolution based on multiscale mixed attention network fusion. IEEE Geosci Remote Sens Lett. 2022;19:5511450.
38.
go back to reference Li Q, Wang Q, Li X. Mixed 2D/3D convolutional network for hyperspectral image super-resolution. Remote Sens. 2020;12(10). Li Q, Wang Q, Li X. Mixed 2D/3D convolutional network for hyperspectral image super-resolution. Remote Sens. 2020;12(10).
39.
go back to reference Li Q, Wang Q, Li X. Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution. IEEE Trans Geosci Remote Sens. 2021;59(10):8693–703.CrossRef Li Q, Wang Q, Li X. Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution. IEEE Trans Geosci Remote Sens. 2021;59(10):8693–703.CrossRef
40.
go back to reference Li Q, Yuan Y, Wang Q. Hyperspectral image super-resolution via multi-domain feature learning. Neurocomputing. 2022;472:85–94.CrossRef Li Q, Yuan Y, Wang Q. Hyperspectral image super-resolution via multi-domain feature learning. Neurocomputing. 2022;472:85–94.CrossRef
41.
go back to reference Wang Q, Li Q, Li X. Hyperspectral image superresolution using spectrum and feature context. IEEE Trans Ind Electron. 2021;68(11):11276–85.CrossRef Wang Q, Li Q, Li X. Hyperspectral image superresolution using spectrum and feature context. IEEE Trans Ind Electron. 2021;68(11):11276–85.CrossRef
42.
go back to reference Alzubaidi L, Bai J, Al-Sabaawi A, Santamaría J, Albahri AS, Al-dabbagh BSN, Fadhel MA, Manoufali M, Zhang J, Al-Timemy AH, Duan Y, Abdullah A, Farhan L, Lu Y, Gupta A, Albu F, Abbosh AM, Gu Y. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J Big Data. 2023;10(1):46.CrossRef Alzubaidi L, Bai J, Al-Sabaawi A, Santamaría J, Albahri AS, Al-dabbagh BSN, Fadhel MA, Manoufali M, Zhang J, Al-Timemy AH, Duan Y, Abdullah A, Farhan L, Lu Y, Gupta A, Albu F, Abbosh AM, Gu Y. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J Big Data. 2023;10(1):46.CrossRef
43.
go back to reference Li X, Zhang L, You J. Domain transfer learning for hyperspectral image super-resolution. Remote Sens. 2019;11(6). Li X, Zhang L, You J. Domain transfer learning for hyperspectral image super-resolution. Remote Sens. 2019;11(6).
44.
go back to reference Xiao Y, Yuan Q, Jiang K, He J, Wang Y, Zhang L. From degrade to upgrade: learning a self-supervised degradation guided adaptive network for blind remote sensing image super-resolution. Inf Fus. 2023;96:297–311.CrossRef Xiao Y, Yuan Q, Jiang K, He J, Wang Y, Zhang L. From degrade to upgrade: learning a self-supervised degradation guided adaptive network for blind remote sensing image super-resolution. Inf Fus. 2023;96:297–311.CrossRef
45.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Curran Associates, Inc., California; 2017. pp. 5998–6008. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Curran Associates, Inc., California; 2017. pp. 5998–6008.
46.
go back to reference Liang J, Cao J, Sun G, Zhang K, VanGool L, Timofte R. Swinir: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. IEEE, Montreal; 2021. pp. 1833–1844. Liang J, Cao J, Sun G, Zhang K, VanGool L, Timofte R. Swinir: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. IEEE, Montreal; 2021. pp. 1833–1844.
47.
go back to reference Liu Y, Hu J, Kang X, Luo J, Fan S. Interactformer: interactive transformer and CNN for hyperspectral image super-resolution. IEEE Trans Geosci Remote Sens. 2022;60:5531715. Liu Y, Hu J, Kang X, Luo J, Fan S. Interactformer: interactive transformer and CNN for hyperspectral image super-resolution. IEEE Trans Geosci Remote Sens. 2022;60:5531715.
48.
go back to reference Gui Z, Peng D, Wu H, Long X. MSGC: multi-scale grid clustering by fusing analytical granularity and visual cognition for detecting hierarchical spatial patterns. Futur Gener Comput Syst. 2020;112:1038–56.CrossRef Gui Z, Peng D, Wu H, Long X. MSGC: multi-scale grid clustering by fusing analytical granularity and visual cognition for detecting hierarchical spatial patterns. Futur Gener Comput Syst. 2020;112:1038–56.CrossRef
49.
go back to reference Fan C, Jacobson A, Chen Z, He X, Zhang L, Hu X, Milford M. Bio-inspired multi-scale visual place recognition for the aerial vehicle navigation. In: Yan L, Duan H, Yu X, editors. Advances in Guidance, Navigation and Control. Singapore: Springer; 2022. p. 1039–49.CrossRef Fan C, Jacobson A, Chen Z, He X, Zhang L, Hu X, Milford M. Bio-inspired multi-scale visual place recognition for the aerial vehicle navigation. In: Yan L, Duan H, Yu X, editors. Advances in Guidance, Navigation and Control. Singapore: Springer; 2022. p. 1039–49.CrossRef
50.
go back to reference Zamir SW, Arora A, Khan S, Hayat M, Khan FS, Yang M-H. Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, New Orleans; 2022. pp. 5728–5739. Zamir SW, Arora A, Khan S, Hayat M, Khan FS, Yang M-H. Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, New Orleans; 2022. pp. 5728–5739.
51.
go back to reference Lindsay GW. Attention in psychology, neuroscience, and machine learning. Front Comput Neurosci. 2020;14:29.CrossRef Lindsay GW. Attention in psychology, neuroscience, and machine learning. Front Comput Neurosci. 2020;14:29.CrossRef
52.
go back to reference Albu F, Mateescu A, Dumitriu N. Architecture selection for a multilayer feedforward network. In: International Conference on Microelectronics and Computer Science; 1997. pp. 131–134. Albu F, Mateescu A, Dumitriu N. Architecture selection for a multilayer feedforward network. In: International Conference on Microelectronics and Computer Science; 1997. pp. 131–134.
53.
go back to reference Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Montreal; 2021. pp. 10012–10022. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Montreal; 2021. pp. 10012–10022.
54.
55.
go back to reference Yasuma F, Mitsunaga T, Iso D, Nayar SK. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans Image Process. 2010;19(9):2241–53.MathSciNetCrossRef Yasuma F, Mitsunaga T, Iso D, Nayar SK. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans Image Process. 2010;19(9):2241–53.MathSciNetCrossRef
56.
go back to reference Chakrabarti A, Zickler T. Statistics of real-world hyperspectral images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Colorado Springs; 2011. pp. 193–200. Chakrabarti A, Zickler T. Statistics of real-world hyperspectral images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Colorado Springs; 2011. pp. 193–200.
57.
go back to reference Huang X, Zhang L. A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy. Int J Remote Sens. 2009;30(12):3205–21.CrossRef Huang X, Zhang L. A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy. Int J Remote Sens. 2009;30(12):3205–21.CrossRef
Metadata
Title
Cognitively-Inspired Multi-Scale Spectral-Spatial Transformer for Hyperspectral Image Super-Resolution
Authors
Qin Xu
Shiji Liu
Jinpei Liu
Bin Luo
Publication date
16-10-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 1/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10210-y

Premium Partner