Skip to main content
Top
Published in: Journal of Materials Science 28/2021

21-07-2021 | Computation & theory

Cold welding behavior of metallic glass nanowires: Insights from large-scale numerical simulations

Authors: Yuhang Zhang, Jiejie Li, Hongjian Zhou, Yiqun Hu, Suhang Ding, Re Xia

Published in: Journal of Materials Science | Issue 28/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cold welding technique at room temperature is the preferred option in nano-assembly and nano-jointing. In this study, the cold welding behavior and mechanical strength of Cu50Zr50 metallic glass nanowires (MGNWs) in head-to-head contact are investigated by molecular dynamics simulation based on the embedded atom method potential. Effects of welding velocity, operating temperature, and size of nanowires are discussed with the consideration of stress, shear strain, atomic deformation processes, and weld quality. Our simulation results demonstrate that a desirable weld quality can be obtained at room temperature. With an increase in welding velocity, the shear deformation zones of the welded MGNWs increase, leading to a decrease in mechanical strength. However, the effect of temperature on the weld quality is not pronounced. Besides, the elongation ability of the welded MGNWs increases with increasing diameters of nanowires. Smaller diameter results in better weld quality due to the size effect of metallic glass. For a pair of MGNWs with different diameters, the necking and fracture of the welded MGNWs occur in the regions of the nanowire with a relatively smaller diameter. This study carries major implications for the fabrication and structural assembly of metallic glass-based nanomaterials.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5(3):218–224CrossRef Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5(3):218–224CrossRef
2.
go back to reference Zhou H, Li J, Xian Y, Hu G, Li X, Xia R (2018) Nanoscale assembly of copper bearing-sleeve via cold-welding: a molecular dynamics study. Nanomaterials (Basel) 8(10):785CrossRef Zhou H, Li J, Xian Y, Hu G, Li X, Xia R (2018) Nanoscale assembly of copper bearing-sleeve via cold-welding: a molecular dynamics study. Nanomaterials (Basel) 8(10):785CrossRef
3.
go back to reference Zhou H, Li J, Xian Y, Wu R, Hu G, Xia R (2018) Molecular dynamics study on cold-welding of 3D nanoporous composite structures. Phys Chem Chem Phys 20(17):12288–12294CrossRef Zhou H, Li J, Xian Y, Wu R, Hu G, Xia R (2018) Molecular dynamics study on cold-welding of 3D nanoporous composite structures. Phys Chem Chem Phys 20(17):12288–12294CrossRef
4.
go back to reference Singh C, Katakam KC, Katakareddi G, Yedla N (2021) Creep behavior of polycrystalline Al (metal)-Cu50Zr50 (metallic glass) cold welds. Mater Today-Proc 41:316–323CrossRef Singh C, Katakam KC, Katakareddi G, Yedla N (2021) Creep behavior of polycrystalline Al (metal)-Cu50Zr50 (metallic glass) cold welds. Mater Today-Proc 41:316–323CrossRef
5.
go back to reference Junchen Li, Wang Yu, Xutao Huang, Chao Zhang, Ren Junqiang Lu, Xuefeng Tang Fuling, Hongtao Xue (2021) Tensile mechanical performance of Al/Ni dissimilar metals bonded by self-propagating exothermic reaction based on molecular dynamics simulation. Mater Today Commun 26:102079CrossRef Junchen Li, Wang Yu, Xutao Huang, Chao Zhang, Ren Junqiang Lu, Xuefeng Tang Fuling, Hongtao Xue (2021) Tensile mechanical performance of Al/Ni dissimilar metals bonded by self-propagating exothermic reaction based on molecular dynamics simulation. Mater Today Commun 26:102079CrossRef
6.
go back to reference Cui Y, Toku Y, Kimura Y, Ju Y (2021) The deformation mechanism in cold-welded gold nanowires due to dislocation emission. Comput Mater Sci 188:110214CrossRef Cui Y, Toku Y, Kimura Y, Ju Y (2021) The deformation mechanism in cold-welded gold nanowires due to dislocation emission. Comput Mater Sci 188:110214CrossRef
7.
go back to reference Pereira ZS, Da Silva EZ (2011) Cold welding of gold and silver nanowires: a molecular dynamics study. J Phys Chem C 115(46):22870–22876CrossRef Pereira ZS, Da Silva EZ (2011) Cold welding of gold and silver nanowires: a molecular dynamics study. J Phys Chem C 115(46):22870–22876CrossRef
8.
go back to reference Rohit Singh, Varun Sharma (2020) Molecular dynamics study of tensile behaviour for cold and linear friction welded single crystal tungsten. J Mol Gr Model 99:107655CrossRef Rohit Singh, Varun Sharma (2020) Molecular dynamics study of tensile behaviour for cold and linear friction welded single crystal tungsten. J Mol Gr Model 99:107655CrossRef
9.
go back to reference Wang W, Yi C (2014) Molecular dynamics understanding on tensile behaviours of cold welding experiments of <100> oriented ultra-thin gold nanowires. Mater Res Innov 18(sup2):S2-673-S2-677CrossRef Wang W, Yi C (2014) Molecular dynamics understanding on tensile behaviours of cold welding experiments of <100> oriented ultra-thin gold nanowires. Mater Res Innov 18(sup2):S2-673-S2-677CrossRef
10.
go back to reference Liu L, Shen DZ, Zou GS, Peng P, Zhou Y (2016) Cold welding of Ag nanowires by large plastic deformation. Scripta Mater 114:112–116CrossRef Liu L, Shen DZ, Zou GS, Peng P, Zhou Y (2016) Cold welding of Ag nanowires by large plastic deformation. Scripta Mater 114:112–116CrossRef
11.
go back to reference Yang WM, Wan C, Liu HS, Li Q, Wang QQ, Li H, Zhou J, Xue L, Shen BL, Inoue A (2017) Fluxing induced boron alloying in Fe-based bulk metallic glasses. Mater Des 129:63–68CrossRef Yang WM, Wan C, Liu HS, Li Q, Wang QQ, Li H, Zhou J, Xue L, Shen BL, Inoue A (2017) Fluxing induced boron alloying in Fe-based bulk metallic glasses. Mater Des 129:63–68CrossRef
12.
go back to reference Peker A, Johnson WL (1993) A Highly Processable Metallic-Glass - Zr41.2ti13.8cu12.5ni10.0be22.5. Appl Phys Lett 63(17):2342–2344CrossRef Peker A, Johnson WL (1993) A Highly Processable Metallic-Glass - Zr41.2ti13.8cu12.5ni10.0be22.5. Appl Phys Lett 63(17):2342–2344CrossRef
13.
go back to reference Mattern N, Bednarcik J, Pauly S, Wang G, Das J, Eckert J (2009) Structural evolution of Cu-Zr metallic glasses under tension. Acta Mater 57(14):4133–4139CrossRef Mattern N, Bednarcik J, Pauly S, Wang G, Das J, Eckert J (2009) Structural evolution of Cu-Zr metallic glasses under tension. Acta Mater 57(14):4133–4139CrossRef
14.
go back to reference Fan C, Liaw PK, Liu CT (2009) Atomistic model of amorphous materials. Intermetallics 17(1–2):86–87CrossRef Fan C, Liaw PK, Liu CT (2009) Atomistic model of amorphous materials. Intermetallics 17(1–2):86–87CrossRef
15.
go back to reference Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57(3):487–488CrossRef Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57(3):487–488CrossRef
16.
go back to reference Wang JF, Li R, Hua NB, Zhang T (2011) Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. J Mater Res 26(16):2072–2079CrossRef Wang JF, Li R, Hua NB, Zhang T (2011) Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. J Mater Res 26(16):2072–2079CrossRef
17.
go back to reference Li JJ, Hu XD, Zhang YH, Tian CY, Hu GM, Liu S, Xia R (2021) A concurrent high strength and ductility of 3D gyroidal nanoporous metallic glasses. J Non-Cryst Solids 556:120567CrossRef Li JJ, Hu XD, Zhang YH, Tian CY, Hu GM, Liu S, Xia R (2021) A concurrent high strength and ductility of 3D gyroidal nanoporous metallic glasses. J Non-Cryst Solids 556:120567CrossRef
18.
go back to reference Chen SH, Cheng HY, Chan KC, Wang G (2018) Metallic glass structures for mechanical-energy-dissipation purpose: a review. Metals 8(9):689CrossRef Chen SH, Cheng HY, Chan KC, Wang G (2018) Metallic glass structures for mechanical-energy-dissipation purpose: a review. Metals 8(9):689CrossRef
19.
go back to reference Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48(1):279–306CrossRef Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48(1):279–306CrossRef
20.
go back to reference Johnson WL (2002) Bulk amorphous metal - An emerging engineering material. Jom-J Min Metal Mater Soc 54(3):40–43CrossRef Johnson WL (2002) Bulk amorphous metal - An emerging engineering material. Jom-J Min Metal Mater Soc 54(3):40–43CrossRef
21.
go back to reference Schuh Christopher A, Hufnagel Todd C, Upadrasta Ramamurty (2007) Mechanical behavior of amorphous alloys. Acta Mater 55(12):4067–4109CrossRef Schuh Christopher A, Hufnagel Todd C, Upadrasta Ramamurty (2007) Mechanical behavior of amorphous alloys. Acta Mater 55(12):4067–4109CrossRef
22.
go back to reference Liu PS, Liang KM (2001) Functional materials of porous metals made by P/M, electroplating and some other techniques. J Mater Sci 36(21):5059–5072CrossRef Liu PS, Liang KM (2001) Functional materials of porous metals made by P/M, electroplating and some other techniques. J Mater Sci 36(21):5059–5072CrossRef
23.
go back to reference Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410(6827):450–453CrossRef Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410(6827):450–453CrossRef
24.
go back to reference Williams DE, Newman RC, Song Q, Kelly RG (1991) Passivity breakdown and pitting corrosion of binary-alloys. Nature 350(6315):216–219CrossRef Williams DE, Newman RC, Song Q, Kelly RG (1991) Passivity breakdown and pitting corrosion of binary-alloys. Nature 350(6315):216–219CrossRef
25.
go back to reference Brothers AH, Dunand DC (2006) Amorphous metal foams. Scripta Mater 54(4):513–520CrossRef Brothers AH, Dunand DC (2006) Amorphous metal foams. Scripta Mater 54(4):513–520CrossRef
26.
go back to reference Şopu D, Soyarslan C, Sarac B, Bargmann S, Stoica M, Eckert J (2016) Structure-property relationships in nanoporous metallic glasses. Acta Mater 106:199–207CrossRef Şopu D, Soyarslan C, Sarac B, Bargmann S, Stoica M, Eckert J (2016) Structure-property relationships in nanoporous metallic glasses. Acta Mater 106:199–207CrossRef
27.
go back to reference Lin WH, Teng Y, Sha ZD, Yuan SY, Branicio PS (2020) Mechanical properties of nanoporous metallic glasses: insights from large-scale atomic simulations. Int J Plast 127:102657CrossRef Lin WH, Teng Y, Sha ZD, Yuan SY, Branicio PS (2020) Mechanical properties of nanoporous metallic glasses: insights from large-scale atomic simulations. Int J Plast 127:102657CrossRef
28.
go back to reference Sha ZD, She CM, Xu GK, Pei QX, Liu ZS, Wang TJ, Gao HJ (2017) Metallic glass-based chiral nanolattice: light weight, auxeticity, and superior mechanical properties. Mater Today 20(10):569–576CrossRef Sha ZD, She CM, Xu GK, Pei QX, Liu ZS, Wang TJ, Gao HJ (2017) Metallic glass-based chiral nanolattice: light weight, auxeticity, and superior mechanical properties. Mater Today 20(10):569–576CrossRef
29.
go back to reference Chen Z, Liu H, Li W, Mo J, Wang M, Zhang Y, Li J, Jiang Q, Yang W, Tang C (2019) Chiral metallic glass nanolattices with combined lower density and improved auxeticity. Phys Chem Chem Phys 21(37):20588–20594CrossRef Chen Z, Liu H, Li W, Mo J, Wang M, Zhang Y, Li J, Jiang Q, Yang W, Tang C (2019) Chiral metallic glass nanolattices with combined lower density and improved auxeticity. Phys Chem Chem Phys 21(37):20588–20594CrossRef
30.
go back to reference Liu C, Yuan SY, Branicio PS (2021) Bicontinuous nanoporous design induced homogenization of strain localization in metallic glasses. Scripta Mater 192:67–72CrossRef Liu C, Yuan SY, Branicio PS (2021) Bicontinuous nanoporous design induced homogenization of strain localization in metallic glasses. Scripta Mater 192:67–72CrossRef
31.
go back to reference Dongchan J, Julia G (2010) Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater 9:215–219CrossRef Dongchan J, Julia G (2010) Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater 9:215–219CrossRef
32.
go back to reference Wang XL, Jiang F, Hahn H, Li J, Gleiter H, Sun J, Fang JX (2015) Plasticity of a scandium-based nanoglass. Scripta Mater 98:40–43CrossRef Wang XL, Jiang F, Hahn H, Li J, Gleiter H, Sun J, Fang JX (2015) Plasticity of a scandium-based nanoglass. Scripta Mater 98:40–43CrossRef
33.
go back to reference Chen CQ, Pei YT, De Hosson JTM (2010) Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater 58(1):189–200CrossRef Chen CQ, Pei YT, De Hosson JTM (2010) Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater 58(1):189–200CrossRef
35.
go back to reference Zhou HJ, Wu WP, Wu RN, Hu GM, Xia R (2017) Effects of various conditions in cold-welding of copper nanowires: a molecular dynamics study. J Appl Phys 122(20):204303CrossRef Zhou HJ, Wu WP, Wu RN, Hu GM, Xia R (2017) Effects of various conditions in cold-welding of copper nanowires: a molecular dynamics study. J Appl Phys 122(20):204303CrossRef
36.
go back to reference Zhou HJ, Xian YH, Wu RN, Hu GM, Xia R (2017) Formation of gold composite nanowires using cold welding: a structure-based molecular dynamics simulation. CrystEngComm 19(42):6357–6364CrossRef Zhou HJ, Xian YH, Wu RN, Hu GM, Xia R (2017) Formation of gold composite nanowires using cold welding: a structure-based molecular dynamics simulation. CrystEngComm 19(42):6357–6364CrossRef
37.
go back to reference Cheng-Da Wu, Te-Hua Fang, Chung-Chin Wu (2015) Effect of temperature on welding of metallic nanowires investigated using molecular dynamics simulations. Mol Simul 42(2):131–137 Cheng-Da Wu, Te-Hua Fang, Chung-Chin Wu (2015) Effect of temperature on welding of metallic nanowires investigated using molecular dynamics simulations. Mol Simul 42(2):131–137
38.
go back to reference Singh R, Gupta P, Yedla N (2019) Single-crystal Al-Cu50Zr50 metallic glass cold welds: tensile and creep behaviour. Mol Simul 45(18):1549–1562CrossRef Singh R, Gupta P, Yedla N (2019) Single-crystal Al-Cu50Zr50 metallic glass cold welds: tensile and creep behaviour. Mol Simul 45(18):1549–1562CrossRef
39.
go back to reference Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19CrossRef
40.
go back to reference Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simul Mater Sci Eng 18(1):015012CrossRef Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simul Mater Sci Eng 18(1):015012CrossRef
41.
go back to reference Loup Verlet (1967) Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys Rev 159(1):98–103CrossRef Loup Verlet (1967) Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys Rev 159(1):98–103CrossRef
42.
go back to reference Mendelev MI, Sordelet DJ, Kramer MJ (2007) Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J Appl Phys 102(4):043501CrossRef Mendelev MI, Sordelet DJ, Kramer MJ (2007) Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J Appl Phys 102(4):043501CrossRef
43.
go back to reference Yuhang Zhang, Yuehui Xian, Jiejie Li, Suhang Ding, Sheng Liu, Re Xia (2021) Atomistic investigation on the mechanical properties of 3D nanoporous metallic glasses under uniaxial tension and compression. Mater Today Commun 27:102460CrossRef Yuhang Zhang, Yuehui Xian, Jiejie Li, Suhang Ding, Sheng Liu, Re Xia (2021) Atomistic investigation on the mechanical properties of 3D nanoporous metallic glasses under uniaxial tension and compression. Mater Today Commun 27:102460CrossRef
44.
go back to reference Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48(11):2923–2927CrossRef Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48(11):2923–2927CrossRef
45.
go back to reference Cheng YQ, Cao AJ, Ma E (2009) Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: the roles of atomic configuration and alloy composition. Acta Mater 57(11):3253–3267CrossRef Cheng YQ, Cao AJ, Ma E (2009) Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: the roles of atomic configuration and alloy composition. Acta Mater 57(11):3253–3267CrossRef
46.
go back to reference Zhou XL, Wang LQ, Chen CQ (2018) Strengthening mechanisms in nanoporous metallic glasses. Comput Mater Sci 155:151–158CrossRef Zhou XL, Wang LQ, Chen CQ (2018) Strengthening mechanisms in nanoporous metallic glasses. Comput Mater Sci 155:151–158CrossRef
47.
go back to reference Sha ZD, Wong WH, Pei QX, Branicio PS, Liu ZS, Wang TJ, Guo TF, Gao HJ (2017) Atomistic origin of size effects in fatigue behavior of metallic glasses. J Mech Phys Solids 104:84–95CrossRef Sha ZD, Wong WH, Pei QX, Branicio PS, Liu ZS, Wang TJ, Guo TF, Gao HJ (2017) Atomistic origin of size effects in fatigue behavior of metallic glasses. J Mech Phys Solids 104:84–95CrossRef
48.
go back to reference Zhou XL, Zhou HF, Li XY, Chen CQ (2015) Size effects on tensile and compressive strengths in metallic glass nanowires. J Mech Phys Solids 84:130–144CrossRef Zhou XL, Zhou HF, Li XY, Chen CQ (2015) Size effects on tensile and compressive strengths in metallic glass nanowires. J Mech Phys Solids 84:130–144CrossRef
49.
go back to reference Zhong C, Zhang H, Cao QP, Wang XD, Zhang DX, Jiang JZ (2015) The size-dependent non-localized deformation in a metallic alloy. Scripta Mater 101:48–51CrossRef Zhong C, Zhang H, Cao QP, Wang XD, Zhang DX, Jiang JZ (2015) The size-dependent non-localized deformation in a metallic alloy. Scripta Mater 101:48–51CrossRef
Metadata
Title
Cold welding behavior of metallic glass nanowires: Insights from large-scale numerical simulations
Authors
Yuhang Zhang
Jiejie Li
Hongjian Zhou
Yiqun Hu
Suhang Ding
Re Xia
Publication date
21-07-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 28/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06336-9

Other articles of this Issue 28/2021

Journal of Materials Science 28/2021 Go to the issue

Premium Partners