Skip to main content
Top

2022 | OriginalPaper | Chapter

2. Collision Processes

Author : Bernd Rauschenbach

Published in: Low-Energy Ion Irradiation of Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Collisions between, on the one hand, the incident ion and the target atoms and, on the other hand, between target atoms themselves are the fundamental processes of ion–solid interaction. In a collision with low and medium ion energies, the interaction between two particles can be described by a screened Coulomb potential. In detail, various screened potentials and their screening function are presented in a summarized form. Interactions between particles in the very low or hyperthermal energy range can, on the one hand, be represented approximately by a Born–Mayer potential and, on the other hand, it is to be taken into account that the attractive part of the interaction potential cannot be ignored any more. In the following, the classical description of the collision processes in both the laboratory system and the center-of-mass system is briefly presented, the collision parameters are introduced, and the scattering angles for the colliding and collided particles are formulated. Subsequently, the total scattering cross section, a quantity indicating the probability of the interaction between ions and target atoms, and the differential scattering cross-section, indicating the number of ions scattered into a differential solid angle at given polar and azimuthal angles, are introduced. The method proposed by Lindhard et al. to represent the differential cross-section as a function of a single parameter for the screened Coulomb interaction is also presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley, Chichester, 2002) T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley, Chichester, 2002)
2.
go back to reference N. Bohr, The penetration of atomic particles through matter. Det. Kgl. Dan. Vid. Selskab. Mat.-Fys. Medd. XVIII(8) (1948) N. Bohr, The penetration of atomic particles through matter. Det. Kgl. Dan. Vid. Selskab. Mat.-Fys. Medd. XVIII(8) (1948)
3.
go back to reference M.A. Kumakhov, F.F. Komarov, Energy Loss and Ion Range in Solids (Gordon and Breach Science Publishers, New York, 1981) M.A. Kumakhov, F.F. Komarov, Energy Loss and Ion Range in Solids (Gordon and Breach Science Publishers, New York, 1981)
4.
go back to reference O.B. Firsov, Interaction energy of atoms for small nuclear separations. JETP J. Exp. Theoret. Phys. 5, 1192–1196 (1957) O.B. Firsov, Interaction energy of atoms for small nuclear separations. JETP J. Exp. Theoret. Phys. 5, 1192–1196 (1957)
5.
go back to reference O.B. Firsov, Calculation of the interaction potential of atoms. JETP J. Exp. Theoret. Phys. 33, 696–699 (1957) O.B. Firsov, Calculation of the interaction potential of atoms. JETP J. Exp. Theoret. Phys. 33, 696–699 (1957)
6.
go back to reference J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985) J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)
7.
8.
go back to reference W. Eckstein, in Computer Simulation of Ion-Solid Interactions. Springer Series in Materials, vol. 19 (Berlin, 1991) W. Eckstein, in Computer Simulation of Ion-Solid Interactions. Springer Series in Materials, vol. 19 (Berlin, 1991)
9.
go back to reference H. Jensen, Die Ladungsverteilung in Ionen und die Gitterkonstante des Rubidiumbromids nach der statistischen Methode. Z. Phys. 77, 722–745 (1932)CrossRef H. Jensen, Die Ladungsverteilung in Ionen und die Gitterkonstante des Rubidiumbromids nach der statistischen Methode. Z. Phys. 77, 722–745 (1932)CrossRef
10.
go back to reference W. Lenz, Über die Anwendbarkeit der statistischen Methode auf Ionengitter. Z. Phys. 77, 713–721 (1932)CrossRef W. Lenz, Über die Anwendbarkeit der statistischen Methode auf Ionengitter. Z. Phys. 77, 713–721 (1932)CrossRef
11.
go back to reference J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by screened coulomb fields—notes on atomic collision I. Det. Kgl. Danske Vid. Selskab. Mat. Fys. Medd. 36(10) (1968) J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by screened coulomb fields—notes on atomic collision I. Det. Kgl. Danske Vid. Selskab. Mat. Fys. Medd. 36(10) (1968)
12.
go back to reference S.T. Nakagawa, Y. Yamamura, Interatomic potential in solids and its applications to range calculations. Rad. Eff. 105, 239–256 (1988)CrossRef S.T. Nakagawa, Y. Yamamura, Interatomic potential in solids and its applications to range calculations. Rad. Eff. 105, 239–256 (1988)CrossRef
13.
go back to reference A. Sommerfeld, Integration der Differentialgleichung des Thomas-Fermischen atoms. Z. Phys. 78, 283–308 (1932) A. Sommerfeld, Integration der Differentialgleichung des Thomas-Fermischen atoms. Z. Phys. 78, 283–308 (1932)
14.
go back to reference G. Moliére, Theorie der Streuung schneller geladener Teilchen I. Z. Naturforsch. A 2, 133–145 (1947) G. Moliére, Theorie der Streuung schneller geladener Teilchen I. Z. Naturforsch. A 2, 133–145 (1947)
15.
go back to reference W.D. Wilson, L.G. Haggmark, J.P. Biersack, Phys. Rev. B 15, 2458–2468 (1977)CrossRef W.D. Wilson, L.G. Haggmark, J.P. Biersack, Phys. Rev. B 15, 2458–2468 (1977)CrossRef
16.
go back to reference D.J. O’Conner, J.P. Biersack, Comparison of theoretical and empirical interatomic potentials, Nucl. Instr. Meth. Phys. Res. B 15, 14–19 (1986) D.J. O’Conner, J.P. Biersack, Comparison of theoretical and empirical interatomic potentials, Nucl. Instr. Meth. Phys. Res. B 15, 14–19 (1986)
17.
go back to reference M. Born, J.E. Mayer, Zur Gruppentheorie der Ionenkristalle. Z. Phys. 75, 1–18 (1932)CrossRef M. Born, J.E. Mayer, Zur Gruppentheorie der Ionenkristalle. Z. Phys. 75, 1–18 (1932)CrossRef
18.
go back to reference D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (Technical Information Center, Oak Ridge, 1976) D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (Technical Information Center, Oak Ridge, 1976)
19.
go back to reference A.A. Abrahamson, Born-Mayer-type Interatomic potential for neutral ground-state atoms with Z = 2 to Z = 105. Phys. Rev. 178, 76–79 (1969)CrossRef A.A. Abrahamson, Born-Mayer-type Interatomic potential for neutral ground-state atoms with Z = 2 to Z = 105. Phys. Rev. 178, 76–79 (1969)CrossRef
21.
go back to reference P.J. Van den Hoek, A.D. Tenner, A.W. Kleyn, E.J. Baerends, Hyperthermal alkali-ion scattering from a metal surface: a theoretical study of the potential. Phys. Rev. B 34, 5030–5042 (1986)CrossRef P.J. Van den Hoek, A.D. Tenner, A.W. Kleyn, E.J. Baerends, Hyperthermal alkali-ion scattering from a metal surface: a theoretical study of the potential. Phys. Rev. B 34, 5030–5042 (1986)CrossRef
22.
go back to reference J.E. Lennard-Jones, On the determination of molecular fields. Proc. Roy. Soc. A 106, 463–477 (1924) J.E. Lennard-Jones, On the determination of molecular fields. Proc. Roy. Soc. A 106, 463–477 (1924)
23.
go back to reference P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929) P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)
24.
go back to reference P. Sigmund, Collision theory of displacement damage, ion range, and sputtering. Rev. Roum. Phys. 17, 823–870, 969–1000, 1079–1106 (1972) P. Sigmund, Collision theory of displacement damage, ion range, and sputtering. Rev. Roum. Phys. 17, 823–870, 969–1000, 1079–1106 (1972)
25.
go back to reference L. Landau, E. Lifshitz, Mechanics (Butterworth-Heinemann, Oxford, 1982) L. Landau, E. Lifshitz, Mechanics (Butterworth-Heinemann, Oxford, 1982)
26.
go back to reference R.E. Johnson, Introduction to Atomic and Molecular Collisions (Plenum Press, New York, 1982)CrossRef R.E. Johnson, Introduction to Atomic and Molecular Collisions (Plenum Press, New York, 1982)CrossRef
27.
go back to reference E.S. Mashkova, V.A. Molchanov, Medium-Energy Ion Reflection from Solids. Modern Problems in Condensed Matter Sciences, vol. 11 (Elsevier, Amsterdam, 1985) E.S. Mashkova, V.A. Molchanov, Medium-Energy Ion Reflection from Solids. Modern Problems in Condensed Matter Sciences, vol. 11 (Elsevier, Amsterdam, 1985)
28.
go back to reference E.W. McDaniel, J.B.A. Mitchell, M.E. Rudd, Atomic Collisions, Heavy Particles Projectiles (Wiley, New York, 1993) E.W. McDaniel, J.B.A. Mitchell, M.E. Rudd, Atomic Collisions, Heavy Particles Projectiles (Wiley, New York, 1993)
29.
go back to reference R.S. Williams, Quantitative intensity analysis of low-energy scattering and recoiling from crystal surfaces, in Low Energy Ion-Surface Interactions, ed. by J.W. Rabalais (Wiley, Chichester, 1994), pp. 1–54 R.S. Williams, Quantitative intensity analysis of low-energy scattering and recoiling from crystal surfaces, in Low Energy Ion-Surface Interactions, ed. by J.W. Rabalais (Wiley, Chichester, 1994), pp. 1–54
30.
go back to reference M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, 1996)CrossRef M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, 1996)CrossRef
31.
go back to reference R. Smith, M. Jakas, D. Ashworth, B. Oven, M. Bowyer, I. Chakarov, R. Webb, Atomic and Ion Collisions in Solids and at Surfaces (Cambridge University Press, Cambridge, 1997)CrossRef R. Smith, M. Jakas, D. Ashworth, B. Oven, M. Bowyer, I. Chakarov, R. Webb, Atomic and Ion Collisions in Solids and at Surfaces (Cambridge University Press, Cambridge, 1997)CrossRef
32.
go back to reference H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics (Addison-Wesley, San Francisco, 2002) H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics (Addison-Wesley, San Francisco, 2002)
33.
go back to reference J. Lindhard, V. Nielsen, M. Scharff, P. Thomsen, Integral equations governing radiation effects—notes on atomic collisions III. Det. Kgl. Danske Vid. Selskab. Mat. Fys. Medd. 33, 1–42 (1963) J. Lindhard, V. Nielsen, M. Scharff, P. Thomsen, Integral equations governing radiation effects—notes on atomic collisions III. Det. Kgl. Danske Vid. Selskab. Mat. Fys. Medd. 33, 1–42 (1963)
34.
go back to reference K.B. Winterbon, Heavy-ion range profiles and associated damage distributions. Rad. Eff. 13, 215–226 (1972)CrossRef K.B. Winterbon, Heavy-ion range profiles and associated damage distributions. Rad. Eff. 13, 215–226 (1972)CrossRef
35.
go back to reference P. Sigmund, Theory of sputtering I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383–416 (1969) P. Sigmund, Theory of sputtering I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383–416 (1969)
36.
go back to reference K.B. Winterbon, P. Sigmund, J.B. Sanders, Spatial distribution of energy deposited by atomic particles in elastic collisions. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 37(14) (1970) K.B. Winterbon, P. Sigmund, J.B. Sanders, Spatial distribution of energy deposited by atomic particles in elastic collisions. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 37(14) (1970)
37.
go back to reference L.C. Feldman, J.W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1968) L.C. Feldman, J.W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1968)
Metadata
Title
Collision Processes
Author
Bernd Rauschenbach
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_2

Premium Partners