Skip to main content
Top
Published in: Colloid and Polymer Science 2/2017

30-12-2016 | Original Contribution

Combined “post-infiltration, subsequent photochemical cross-linking” and “cross-linking and selective etching” strategies to fabricate nanoporous layer-by-layer assembled multilayers

Authors: Heng Du, Yajun Zhang, Shanshan Lv

Published in: Colloid and Polymer Science | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study reports a new method combining a “post-infiltration, subsequent photochemical cross-linking” strategy and a “cross-linking and selective etching” approach to fabricate porous multilayers incorporating weak polyelectrolytes poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), and poly(sodium-p-styrenesulfonate) (PSS). The multilayer film is fabricated by layer-by-layer (LbL) assembly of a blend of PAH and PEI in alternation with PSS to construct a composite multilayer film as a precursor. Then, 4,4′-diazido-2,2′-stilbenedisulfonic acid disodium (DAS) is infiltrated into the multilayer films, and subsequent photochemical cross-linking is applied under UV irradiation. By taking advantage of the differences between PAH/PSS and PEI/PSS, the multilayer films are immersed into a basic solution to selectively dissolve PEI. UV-visible spectroscopy, atomic force microscopy and cyclic voltammogram characterization results prove formation of nanoporous structures in the LbL assembled multilayer films. This novel way to fabricate porous films is anticipated to have potential applications in polymer and interface science.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRef Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRef
2.
go back to reference Onitsuka O, Fou A, Ferreira M, Hsieh B, Rubner M (1996) Enhancement of light emitting diodes based on self-assembled heterostructures of poly (p-phenylene vinylene). J Appl Phys 80:4067–4071CrossRef Onitsuka O, Fou A, Ferreira M, Hsieh B, Rubner M (1996) Enhancement of light emitting diodes based on self-assembled heterostructures of poly (p-phenylene vinylene). J Appl Phys 80:4067–4071CrossRef
3.
go back to reference Yoo D, Shiratori SS, Rubner MF (1998) Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 31:4309–4318CrossRef Yoo D, Shiratori SS, Rubner MF (1998) Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 31:4309–4318CrossRef
4.
go back to reference Onda M, Lvov Y, Ariga K, Kunitake T (1996) Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. Biotechnol Bioeng 51:163–167CrossRef Onda M, Lvov Y, Ariga K, Kunitake T (1996) Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. Biotechnol Bioeng 51:163–167CrossRef
5.
go back to reference Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J (1994) New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens Bioelectron 9:677–684CrossRef Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J (1994) New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens Bioelectron 9:677–684CrossRef
6.
go back to reference Cheng J, Fou A, Rubner M (1994) Molecular self-assembly of conducting polymers. Thin Solid Films 244:985–989CrossRef Cheng J, Fou A, Rubner M (1994) Molecular self-assembly of conducting polymers. Thin Solid Films 244:985–989CrossRef
7.
go back to reference DeLongchamp D, Hammond PT (2001) Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices. Adv Mater 13:1455–1459CrossRef DeLongchamp D, Hammond PT (2001) Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices. Adv Mater 13:1455–1459CrossRef
8.
go back to reference Fou A, Onitsuka O, Ferreira M, Rubner M, Hsieh B (1996) Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene). J Appl Phys 79:7501–7509CrossRef Fou A, Onitsuka O, Ferreira M, Rubner M, Hsieh B (1996) Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene). J Appl Phys 79:7501–7509CrossRef
9.
go back to reference Wu A, Lee J, Rubner MF (1998) Light emitting electrochemical devices from sequentially adsorbed multilayers of a polymeric ruthenium(II) complex and various polyanions. Thin Solid Films 327:663–667CrossRef Wu A, Lee J, Rubner MF (1998) Light emitting electrochemical devices from sequentially adsorbed multilayers of a polymeric ruthenium(II) complex and various polyanions. Thin Solid Films 327:663–667CrossRef
10.
go back to reference Mendelsohn J, Barrett CJ, Chan V, Pal A, Mayes A, Rubner M (2000) Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 16:5017–5023CrossRef Mendelsohn J, Barrett CJ, Chan V, Pal A, Mayes A, Rubner M (2000) Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 16:5017–5023CrossRef
11.
go back to reference Hammond PT (1999) Recent explorations in electrostatic multilayer thin film assembly. Curr Opin Colloid Interface Sci 4:430–442CrossRef Hammond PT (1999) Recent explorations in electrostatic multilayer thin film assembly. Curr Opin Colloid Interface Sci 4:430–442CrossRef
12.
go back to reference Prikulis J, Hanarp P, Olofsson L, Sutherland D, Käll M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4:1003–1007CrossRef Prikulis J, Hanarp P, Olofsson L, Sutherland D, Käll M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4:1003–1007CrossRef
13.
go back to reference Berg MC, Zhai L, Cohen RE, Rubner MF (2006) Controlled drug release from porous polyelectrolyte multilayers. Biomacromolecules 7:357–364CrossRef Berg MC, Zhai L, Cohen RE, Rubner MF (2006) Controlled drug release from porous polyelectrolyte multilayers. Biomacromolecules 7:357–364CrossRef
14.
go back to reference Peterson DS, Rohr T, Svec F, Fréchet JM (2003) Dual-function microanalytical device by in situ photolithographic grafting of porous polymer monolith: integrating solid-phase extraction and enzymatic digestion for peptide mass mapping. Anal Chem 75:5328–5335CrossRef Peterson DS, Rohr T, Svec F, Fréchet JM (2003) Dual-function microanalytical device by in situ photolithographic grafting of porous polymer monolith: integrating solid-phase extraction and enzymatic digestion for peptide mass mapping. Anal Chem 75:5328–5335CrossRef
15.
go back to reference Ling FH, Lu V, Svec F, Fréchet JM (2002) Effect of multivalency on the performance of enantioselective separation media for chiral HPLC prepared by linking multiple selectors to a porous polymer support via aliphatic dendrons. The Journal of organic chemistry 67:1993–2002CrossRef Ling FH, Lu V, Svec F, Fréchet JM (2002) Effect of multivalency on the performance of enantioselective separation media for chiral HPLC prepared by linking multiple selectors to a porous polymer support via aliphatic dendrons. The Journal of organic chemistry 67:1993–2002CrossRef
16.
go back to reference Lakshmi BB, Martin CR (1997) Enantioseparation using apoenzymes immobilized in a porous polymeric membrane. Nature 388:758–760CrossRef Lakshmi BB, Martin CR (1997) Enantioseparation using apoenzymes immobilized in a porous polymeric membrane. Nature 388:758–760CrossRef
17.
go back to reference Ruckenstein E, Hong L (1992) Binding catalytic sites to the surface of porous polymers and some catalytic applications. Chem Mater 4:122–127CrossRef Ruckenstein E, Hong L (1992) Binding catalytic sites to the surface of porous polymers and some catalytic applications. Chem Mater 4:122–127CrossRef
18.
go back to reference Walheim S, Schäffer E, Mlynek J, Steiner U (1999) Nanophase-separated polymer films as high-performance antireflection coatings. Science 283:520–522CrossRef Walheim S, Schäffer E, Mlynek J, Steiner U (1999) Nanophase-separated polymer films as high-performance antireflection coatings. Science 283:520–522CrossRef
19.
go back to reference Jang JH, Shea LD (2003) Controllable delivery of non-viral DNA from porous scaffolds. J Control Release 86:157–168CrossRef Jang JH, Shea LD (2003) Controllable delivery of non-viral DNA from porous scaffolds. J Control Release 86:157–168CrossRef
20.
go back to reference Sohier J, Haan R, De Groot K, Bezemer J (2003) A novel method to obtain protein release from porous polymer scaffolds: emulsion coating. J Control Release 87:57–68CrossRef Sohier J, Haan R, De Groot K, Bezemer J (2003) A novel method to obtain protein release from porous polymer scaffolds: emulsion coating. J Control Release 87:57–68CrossRef
21.
go back to reference Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900CrossRef Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900CrossRef
22.
go back to reference Shastri VP, Hildgen P, Langer R (2003) In situ pore formation in a polymer matrix by differential polymer degradation. Biomaterials 24:3133–3137CrossRef Shastri VP, Hildgen P, Langer R (2003) In situ pore formation in a polymer matrix by differential polymer degradation. Biomaterials 24:3133–3137CrossRef
23.
go back to reference Lin AS, Barrows TH, Cartmell SH, Guldberg RE (2003) Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials 24:481–489CrossRef Lin AS, Barrows TH, Cartmell SH, Guldberg RE (2003) Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials 24:481–489CrossRef
24.
go back to reference Yi DK, Kim DY (2003) Novel approach to the fabrication of macroporous polymers and their use as a template for crystalline titania nanorings. Nano Lett 3:207–211CrossRef Yi DK, Kim DY (2003) Novel approach to the fabrication of macroporous polymers and their use as a template for crystalline titania nanorings. Nano Lett 3:207–211CrossRef
25.
go back to reference Hiller JA, Mendelsohn JD, Rubner MF (2002) Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nat Mater 1:59–63CrossRef Hiller JA, Mendelsohn JD, Rubner MF (2002) Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nat Mater 1:59–63CrossRef
26.
go back to reference Zhai L, Nolte AJ, Cohen RE, Rubner MF (2004) pH-gated porosity transitions of polyelectrolyte multilayers in confined geometries and their application as tunable Bragg reflectors. Macromolecules 37:6113–6123CrossRef Zhai L, Nolte AJ, Cohen RE, Rubner MF (2004) pH-gated porosity transitions of polyelectrolyte multilayers in confined geometries and their application as tunable Bragg reflectors. Macromolecules 37:6113–6123CrossRef
27.
go back to reference Fu Y, Bai S, Cui S, Qiu Q, Wang Z, Zhang X (2002) Hydrogen-bonding-directed layer-by-layer multilayer assembly: reconformation yielding microporous films. Macromolecules 35:9451–9458CrossRef Fu Y, Bai S, Cui S, Qiu Q, Wang Z, Zhang X (2002) Hydrogen-bonding-directed layer-by-layer multilayer assembly: reconformation yielding microporous films. Macromolecules 35:9451–9458CrossRef
28.
go back to reference Bai S, Wang Z, Zhang X, Wang B (2004) Hydrogen-bonding-directed layer-by-layer films: effect of electrostatic interaction on the microporous morphology variation. Langmuir 20:11828–11832CrossRef Bai S, Wang Z, Zhang X, Wang B (2004) Hydrogen-bonding-directed layer-by-layer films: effect of electrostatic interaction on the microporous morphology variation. Langmuir 20:11828–11832CrossRef
29.
go back to reference Lutkenhaus JL, McEnnis K, Hammond PT (2008) Nano- and microporous layer-by-layer assemblies containing linear poly(ethylenimine) and poly(acrylic acid). Macromolecules 41:6047–6054CrossRef Lutkenhaus JL, McEnnis K, Hammond PT (2008) Nano- and microporous layer-by-layer assemblies containing linear poly(ethylenimine) and poly(acrylic acid). Macromolecules 41:6047–6054CrossRef
30.
go back to reference Fery A, Schöler B, Cassagneau T, Caruso F (2001) Nanoporous thin films formed by salt-induced structural changes in multilayers of poly (acrylic acid) and poly (allylamine). Langmuir 17:3779–3783CrossRef Fery A, Schöler B, Cassagneau T, Caruso F (2001) Nanoporous thin films formed by salt-induced structural changes in multilayers of poly (acrylic acid) and poly (allylamine). Langmuir 17:3779–3783CrossRef
31.
go back to reference Dong WF, Liu S, Wan L, Mao G, Kurth DG, Möhwald H (2005) Controlled permeability in polyelectrolyte films via solvent treatment. Chem Mater 17:4992–4999CrossRef Dong WF, Liu S, Wan L, Mao G, Kurth DG, Möhwald H (2005) Controlled permeability in polyelectrolyte films via solvent treatment. Chem Mater 17:4992–4999CrossRef
32.
go back to reference Li Q, Quinn JF, Wang Y, Caruso F (2006) Preparation of nanoporous polyelectrolyte multilayer films via nanoparticle templating. Chem Mater 18:5480–5485CrossRef Li Q, Quinn JF, Wang Y, Caruso F (2006) Preparation of nanoporous polyelectrolyte multilayer films via nanoparticle templating. Chem Mater 18:5480–5485CrossRef
33.
go back to reference Tan WS, Du Y, Luna LE, Khitass Y, Cohen RE, Rubner MF (2012) Templated nanopores for robust functional surface porosity in poly(methyl methacrylate). Langmuir 28:13496–13502CrossRef Tan WS, Du Y, Luna LE, Khitass Y, Cohen RE, Rubner MF (2012) Templated nanopores for robust functional surface porosity in poly(methyl methacrylate). Langmuir 28:13496–13502CrossRef
34.
go back to reference Zhang H, Fu Y, Wang D, Wang L, Wang Z, Zhang X (2003) Hydrogen-bonding-directed layer-by-layer assembly of dendrimer and poly (4-vinylpyridine) and micropore formation by post-base treatment. Langmuir 19:8497–8502CrossRef Zhang H, Fu Y, Wang D, Wang L, Wang Z, Zhang X (2003) Hydrogen-bonding-directed layer-by-layer assembly of dendrimer and poly (4-vinylpyridine) and micropore formation by post-base treatment. Langmuir 19:8497–8502CrossRef
35.
go back to reference Cho J, Hong J, Char K, Caruso F (2006) Nanoporous block copolymer micelle/micelle multilayer films with dual optical properties. J Am Chem Soc 128:9935–9942CrossRef Cho J, Hong J, Char K, Caruso F (2006) Nanoporous block copolymer micelle/micelle multilayer films with dual optical properties. J Am Chem Soc 128:9935–9942CrossRef
36.
go back to reference Farhat TR, Hammond PT (2006) Engineering ionic and electronic conductivity in polymer catalytic electrodes using the layer-by-layer technique. Chem Mater 18:41–49CrossRef Farhat TR, Hammond PT (2006) Engineering ionic and electronic conductivity in polymer catalytic electrodes using the layer-by-layer technique. Chem Mater 18:41–49CrossRef
37.
go back to reference Kim HC, Wilds JB, Kreller CR, Volksen W, Brock PJ, Lee VY, Magbitang T, Hedrick JL, Hawker CJ, Miller RD (2002) Fabrication of multilayered nanoporous poly (methyl silsesquioxane). Adv Mater 14:1637–1639CrossRef Kim HC, Wilds JB, Kreller CR, Volksen W, Brock PJ, Lee VY, Magbitang T, Hedrick JL, Hawker CJ, Miller RD (2002) Fabrication of multilayered nanoporous poly (methyl silsesquioxane). Adv Mater 14:1637–1639CrossRef
38.
go back to reference Wang Y, Yu A, Caruso Y (2005) Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres. Angew Chem Int Ed 44:2888–2891CrossRef Wang Y, Yu A, Caruso Y (2005) Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres. Angew Chem Int Ed 44:2888–2891CrossRef
39.
go back to reference Cho J, Quinn JF, Caruso F (2004) Fabrication of polyelectrolyte multilayer films comprising nanoblended layers. J Am Chem Soc 126:2270–2271CrossRef Cho J, Quinn JF, Caruso F (2004) Fabrication of polyelectrolyte multilayer films comprising nanoblended layers. J Am Chem Soc 126:2270–2271CrossRef
40.
go back to reference Ibn-Elhaj M, Schadt M (2001) Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies. Nature 410:796–799CrossRef Ibn-Elhaj M, Schadt M (2001) Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies. Nature 410:796–799CrossRef
41.
go back to reference Fu GD, Yuan Z, Kang ET, Neoh KG, Lai DM, Huan ACH (2005) Nanoporous ultra-low-dielectric-constant fluoropolymer films via selective UV decomposition of poly(pentafluorostyrene)-block-poly (methyl methacrylate) copolymers prepared using atom transfer radical polymerization. Adv Funct Mater 15:315–322CrossRef Fu GD, Yuan Z, Kang ET, Neoh KG, Lai DM, Huan ACH (2005) Nanoporous ultra-low-dielectric-constant fluoropolymer films via selective UV decomposition of poly(pentafluorostyrene)-block-poly (methyl methacrylate) copolymers prepared using atom transfer radical polymerization. Adv Funct Mater 15:315–322CrossRef
42.
go back to reference Park J, Park J, Kim SH, Cho J, Bang J (2010) Desalination membranes from pH-controlled and thermally-crosslinked layer-by-layer assembled multilayers. J Mater Chem 20:2085–2091CrossRef Park J, Park J, Kim SH, Cho J, Bang J (2010) Desalination membranes from pH-controlled and thermally-crosslinked layer-by-layer assembled multilayers. J Mater Chem 20:2085–2091CrossRef
43.
go back to reference Olugebefola SC, Kuhlman WA, Rubner MF, Mayes AM (2008) Photopatterned nanoporosity in polyelectrolyte multilayer films. Langmuir 24:5172–5178CrossRef Olugebefola SC, Kuhlman WA, Rubner MF, Mayes AM (2008) Photopatterned nanoporosity in polyelectrolyte multilayer films. Langmuir 24:5172–5178CrossRef
44.
go back to reference Wang Y, Han P, Wu G, Xu H, Wang Z, Zhang X (2010) Selectively erasable multilayer thin film by photoinduced disassembly. Langmuir 26:9736–9741CrossRef Wang Y, Han P, Wu G, Xu H, Wang Z, Zhang X (2010) Selectively erasable multilayer thin film by photoinduced disassembly. Langmuir 26:9736–9741CrossRef
45.
go back to reference Li Q, Quinn JF, Caruso F (2005) Nanoporous polymer thin films via polyelectrolyte templating. Adv Mater 17:2058–2062CrossRef Li Q, Quinn JF, Caruso F (2005) Nanoporous polymer thin films via polyelectrolyte templating. Adv Mater 17:2058–2062CrossRef
46.
go back to reference Cho KL, Lomas H, Hill AJ, Caruso F, Kentish SE (2014) Spray assembled, cross-linked polyelectrolyte multilayer membranes for salt removal. Langmuir 30:8784–8790CrossRef Cho KL, Lomas H, Hill AJ, Caruso F, Kentish SE (2014) Spray assembled, cross-linked polyelectrolyte multilayer membranes for salt removal. Langmuir 30:8784–8790CrossRef
47.
go back to reference Wang Y, An Q, Zhou Y, Niu Y, Akram R, Zhang Y, Shi F (2015) Post-infiltration and subsequent photo-crosslinking strategy for layer-by-layer fabrication of stable dendrimers enabling repeated loading and release of hydrophobic molecules. Journal of Materials Chemistry B 3:562–569CrossRef Wang Y, An Q, Zhou Y, Niu Y, Akram R, Zhang Y, Shi F (2015) Post-infiltration and subsequent photo-crosslinking strategy for layer-by-layer fabrication of stable dendrimers enabling repeated loading and release of hydrophobic molecules. Journal of Materials Chemistry B 3:562–569CrossRef
48.
go back to reference Zhou Y, Cheng M, Zhu X, Zhang Y, An Q, Shi F (2013) A facile method to prepare molecularly imprinted layer-by-layer nanostructured multilayers using postinfiltration and a subsequent photo-cross-linking strategy. ACS Appl Mater Interfaces 5:8308–8313CrossRef Zhou Y, Cheng M, Zhu X, Zhang Y, An Q, Shi F (2013) A facile method to prepare molecularly imprinted layer-by-layer nanostructured multilayers using postinfiltration and a subsequent photo-cross-linking strategy. ACS Appl Mater Interfaces 5:8308–8313CrossRef
49.
go back to reference Zhang X, Jiang C, Cheng M, Zhou Y, Zhu X, Nie J, Zhang Y, An Q, Shi F (2012) Facile method for the fabrication of robust polyelectrolyte multilayers by post-photo-cross-linking of azido groups. Langmuir 28:7096–7100CrossRef Zhang X, Jiang C, Cheng M, Zhou Y, Zhu X, Nie J, Zhang Y, An Q, Shi F (2012) Facile method for the fabrication of robust polyelectrolyte multilayers by post-photo-cross-linking of azido groups. Langmuir 28:7096–7100CrossRef
50.
go back to reference Zhu X, Fan X, Ju G, Cheng M, An Q, Nie J, Shi F (2013) A facile method to immobilize cucurbituril on surfaces through photocrosslinking with azido groups. Chem Commun 49:8093–8095CrossRef Zhu X, Fan X, Ju G, Cheng M, An Q, Nie J, Shi F (2013) A facile method to immobilize cucurbituril on surfaces through photocrosslinking with azido groups. Chem Commun 49:8093–8095CrossRef
Metadata
Title
Combined “post-infiltration, subsequent photochemical cross-linking” and “cross-linking and selective etching” strategies to fabricate nanoporous layer-by-layer assembled multilayers
Authors
Heng Du
Yajun Zhang
Shanshan Lv
Publication date
30-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 2/2017
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-016-3990-8

Other articles of this Issue 2/2017

Colloid and Polymer Science 2/2017 Go to the issue

Premium Partners