Skip to main content
Top

2023 | OriginalPaper | Chapter

17. Combining Simulation and Experiment for Acoustic-Load Identification

Authors : Garrett K. Lopp, Ryan Schultz

Published in: Model Validation and Uncertainty Quantification, Volume 3

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bayesian inference is a technique that researchers have recently employed to solve inverse problems in structural dynamics and acoustics. More specifically, this technique can identify the spatial correlation of a distributed set of pressure loads generated during vibroacoustic testing. In this context, Bayesian inference augments the experimenter’s prior knowledge of the acoustic field prior to testing with vibration measurements at several locations on the test article to update these pressure correlations. One method to incorporate prior knowledge is to use a theoretical form of the correlations; however, theoretical forms only exist for a few special cases, e.g., a diffuse field or uncorrelated pressures. For more complex loading scenarios, such as those arising in a direct-field acoustic test, utilizing one of these theoretical priors may not be able to accurately reproduce the acoustic loading generated during the experiment. As such, this work leverages the pressure correlations generated from an acoustic simulation as the Bayesian prior to increase the accuracy of the inference for complex loading scenarios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, E., Antoni, J., Feissel, P.: Bayesian force reconstruction with an uncertain model. J. Sound Vibration 331(4), 798–814 (2012)CrossRef Zhang, E., Antoni, J., Feissel, P.: Bayesian force reconstruction with an uncertain model. J. Sound Vibration 331(4), 798–814 (2012)CrossRef
2.
go back to reference Antoni, J.: A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing. J. Acoust. Soc. Am. 131(2873), 2873–2890 (2012)CrossRef Antoni, J.: A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing. J. Acoust. Soc. Am. 131(2873), 2873–2890 (2012)CrossRef
3.
go back to reference Pereira, A., Antoni, J., Leclère, Q.: Empirical Bayesian regularization of the inverse acoustic problem. Appl. Acoust. 97, 11–29 (2015)CrossRef Pereira, A., Antoni, J., Leclère, Q.: Empirical Bayesian regularization of the inverse acoustic problem. Appl. Acoust. 97, 11–29 (2015)CrossRef
4.
go back to reference Aucejo, M., Smet, O.D.: Bayesian source identification using local priors. Mech. Syst. Signal Process. 66–67, 120–136 (2016)CrossRef Aucejo, M., Smet, O.D.: Bayesian source identification using local priors. Mech. Syst. Signal Process. 66–67, 120–136 (2016)CrossRef
5.
go back to reference Faure, C., Ablitzer, F., Antoni, J., Pézerat, C.: Empirical and fully Bayesian approaches for the identification of vibration sources from transverse displacement measurements. Mech. Syst. Signal Process. 94, 180–201 (2017)CrossRef Faure, C., Ablitzer, F., Antoni, J., Pézerat, C.: Empirical and fully Bayesian approaches for the identification of vibration sources from transverse displacement measurements. Mech. Syst. Signal Process. 94, 180–201 (2017)CrossRef
6.
go back to reference Aucejo, M., Smet, O.D.: On a full Bayesian inference for force reconstruction problems. Mech. Syst. Signal Process. 104, 36–59 (2018)CrossRef Aucejo, M., Smet, O.D.: On a full Bayesian inference for force reconstruction problems. Mech. Syst. Signal Process. 104, 36–59 (2018)CrossRef
7.
go back to reference Aucejo, M., Smet, O.D.: An optimal Bayesian regularization for force reconstruction problems. Mech. Syst. Signal Process. 126, 98–115 (2019)CrossRef Aucejo, M., Smet, O.D.: An optimal Bayesian regularization for force reconstruction problems. Mech. Syst. Signal Process. 126, 98–115 (2019)CrossRef
8.
go back to reference Lopp, G.K., Schultz, R.: A Bayesian approach for identifying the spatial correlation of acoustic loads during vibroacoustic testing. In: Paper Presented at the 38th International Modal Analysis Conference, February (2020) Lopp, G.K., Schultz, R.: A Bayesian approach for identifying the spatial correlation of acoustic loads during vibroacoustic testing. In: Paper Presented at the 38th International Modal Analysis Conference, February (2020)
9.
go back to reference Lopp, G.K., Schultz, R., Beale, D.: An experimental study of a Bayesian-based approach to identify full-field acoustic loads during vibroacoustic testing. In: Paper Presented at the 39th International Modal Analysis Conference, February (2021) Lopp, G.K., Schultz, R., Beale, D.: An experimental study of a Bayesian-based approach to identify full-field acoustic loads during vibroacoustic testing. In: Paper Presented at the 39th International Modal Analysis Conference, February (2021)
10.
go back to reference Lopp, G.K., Schultz, R.: Bayesian-based response estimation and uncertainty quantification using sparse measurement sets. Mech. Syst. Signal Process. 169, 107566 (2022)CrossRef Lopp, G.K., Schultz, R.: Bayesian-based response estimation and uncertainty quantification using sparse measurement sets. Mech. Syst. Signal Process. 169, 107566 (2022)CrossRef
11.
go back to reference Cook, R.K., Waterhouse, R.V., Berendt, R.D., Edelman, S., Thompson Jr, M.C.: Measurement of correlation coefficients in reverberant sound fields. J. Acoust. Soc. Am. 27(6), 1072–1077 (1955)CrossRef Cook, R.K., Waterhouse, R.V., Berendt, R.D., Edelman, S., Thompson Jr, M.C.: Measurement of correlation coefficients in reverberant sound fields. J. Acoust. Soc. Am. 27(6), 1072–1077 (1955)CrossRef
12.
go back to reference Corcos, G.M.: Resolution of pressure in turbulence. J. Acoust. Soc. Am. 35, 192 (1963)CrossRef Corcos, G.M.: Resolution of pressure in turbulence. J. Acoust. Soc. Am. 35, 192 (1963)CrossRef
Metadata
Title
Combining Simulation and Experiment for Acoustic-Load Identification
Authors
Garrett K. Lopp
Ryan Schultz
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-04090-0_17