Skip to main content
Top
Published in:

01-10-2016 | Comment

Comment on “Calculated Trajectories of Curling Stones Under Asymmetrical Friction: Validation of Published Models”

Authors: Mark R. A. Shegelski, Matthew Reid, E. T. Jensen

Published in: Tribology Letters | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It has been suggested that front–back asymmetry cannot account for the full curl distance of a curling rock [1]. It has also been proposed that this implies that front–back asymmetry cannot explain why curling rocks curl and cannot account for any of the curl distance. It is shown here that these views are inappropriate. Reasons for their erroneous statements are given. A simple analytical calculation is carried out to show that the full curl distance can be due solely to front–back asymmetry. Several examples are presented in which the front–back-asymmetric, thin-liquid-film model makes predictions which are confirmed experimentally or observationally. Consequently, the choice to dismiss this front–back asymmetry mechanism, which is made by the authors of the paper in question [1], is inappropriate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
Comment on “Calculated Trajectories of Curling Stones Under Asymmetrical Friction: Validation of Published Models”
Authors
Mark R. A. Shegelski
Matthew Reid
E. T. Jensen
Publication date
01-10-2016
Publisher
Springer US
Published in
Tribology Letters / Issue 1/2016
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-016-0752-1

Premium Partners