Skip to main content
Top

2024 | OriginalPaper | Chapter

Commutativity Theorems on Prime Rings with Generalized Derivations

Authors : Basudeb Dhara, Sukhendu Kar, Kalyan Singh

Published in: Advances in Ring Theory and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Suppose that \(\mathcal {R}\) is a prime ring, \(\mathcal {I}\) a nonzero ideal of \(\mathcal {R}\), \(\mathcal {F}\) a generalized derivation of \(\mathcal {R}\) and n a fixed positive integer. If
$$ (\mathcal {F}(x_1)x_2+x_1\mathcal {F}(x_2)+\mathcal {F}(x_2)x_1+x_2\mathcal {F}(x_1))^n-(x_1x_2+x_2x_1)=0, $$
for all \(x_1,x_2\in \mathcal {I}\), then one of the following holds:
1.
\(\mathcal {R}\) is commutative;
 
2.
\(n=1\) and there exists \(\lambda \in \mathcal {C}\) such that \(\mathcal {F}(x)=\lambda x\), for all \(x\in \mathcal {R}\) with \(2\lambda =1\).
 
If \(char(\mathcal {R})\ne 2\) and
$$ (\mathcal {F}(x_1)x_2+x_1\mathcal {F}(x_2)+\mathcal {F}(x_2)x_1+x_2\mathcal {F}(x_1))^n-(x_1x_2+x_2x_1)\in \mathcal {Z}(\mathcal {R}), $$
for all \(x_1,x_2\in \mathcal {I}\), then one of the following holds:
1.
\(\mathcal {R}\) is commutative.
 
2.
\(n=1\) and there exists \(\lambda \in \mathcal {C}\) such that \(\mathcal {F}(x)=\lambda x\), for all \(x\in \mathcal {R}\) with \(2\lambda =1\).
 
We examine the aforementioned identities in semiprime rings and also obtain some range inclusion results on Banach algebras.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Ashraf, M., Ali, A., Ali, S.: Some commutativity theorems for rings with generalized derivations. Southeast Asian Bull. Math. 31, 415–421 (2007)MathSciNet Ashraf, M., Ali, A., Ali, S.: Some commutativity theorems for rings with generalized derivations. Southeast Asian Bull. Math. 31, 415–421 (2007)MathSciNet
5.
go back to reference Beidar, K.I., Martindale, W.S., Mikhalev, A.V.: Rings with generalized identities. Pure and Applied Mathematics. Dekker, New York (1996) Beidar, K.I., Martindale, W.S., Mikhalev, A.V.: Rings with generalized identities. Pure and Applied Mathematics. Dekker, New York (1996)
6.
go back to reference Beidar, K.I.: Rings of quotients of semiprime rings. Moskow Univ. Math. Bull. 33, 36–42 (1978) Beidar, K.I.: Rings of quotients of semiprime rings. Moskow Univ. Math. Bull. 33, 36–42 (1978)
13.
go back to reference Erickson, T.S., Martindale 3rd, W.S., Obsorn, J.M.: Prime nonassociative algebras. Pacific J. Math. 60, 49–63 (1975) Erickson, T.S., Martindale 3rd, W.S., Obsorn, J.M.: Prime nonassociative algebras. Pacific J. Math. 60, 49–63 (1975)
15.
go back to reference Jacobson, N.: Structure of rings. Am. Math. Soc. Colloq. Pub., 37. American Mathematical Society, Providence, RI (1964) Jacobson, N.: Structure of rings. Am. Math. Soc. Colloq. Pub., 37. American Mathematical Society, Providence, RI (1964)
20.
go back to reference Lee, T.K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica 20(1), 27–38 (1992)MathSciNet Lee, T.K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica 20(1), 27–38 (1992)MathSciNet
Metadata
Title
Commutativity Theorems on Prime Rings with Generalized Derivations
Authors
Basudeb Dhara
Sukhendu Kar
Kalyan Singh
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50795-3_5

Premium Partner