Skip to main content
Top

2024 | OriginalPaper | Chapter

Commuting Iterates of Generalized Derivations on Lie Ideals

Author : Francesco Ammendolia

Published in: Advances in Ring Theory and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let R be a prime ring of characteristic different from 2, \(Q_r\) its right Martindale quotient ring, C its extended centroid, F and G two nonzero generalized derivations of R, L a non-central Lie ideal of R and \(n \ge 1\) a fixed integer. If
$$\begin{aligned} \Bigl \{F^2(x)x-xG^2(x)\Bigr \}^n=0 \end{aligned}$$
for all \(x \in L\), then either \(R \subseteq M_2(K)\), the ring \(2 \times 2\) matrices over a field K, or one ot the following holds:
1.
\(F(x) = xa\) and \(G(x) = xc\) for all \(x \in R\) with \(a^2 = c^2 \in C\);
 
2.
\(F(x) = xa\) and \(G(x) = cx\) for all \(x \in R\) with \(a^2 = c^2\);
 
3.
\(F(x) = ax\) and \(G(x) = xc\) for all \(x \in R\) with \(a^2 = c^2 \in C\);
 
4.
\(F(x) = ax\) and \(G(x) = cx\) for all \(x \in R\) with \(a^2 = c^2 \in C\).
 

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Argac, N., De Filippis, V.: Actions of generalized derivations on multilinear polyomials in prime rings. Algebra Colloq. 18, 955–964 (2011)MathSciNetCrossRef Argac, N., De Filippis, V.: Actions of generalized derivations on multilinear polyomials in prime rings. Algebra Colloq. 18, 955–964 (2011)MathSciNetCrossRef
3.
go back to reference Herstein, I.N.: Topics in Ring Theory. University Chicago Press, Chicago, IL (1969) Herstein, I.N.: Topics in Ring Theory. University Chicago Press, Chicago, IL (1969)
4.
go back to reference Di Vincenzo, O.M.: On the nth centralizer of a Lie ideal. Boll. Un. Mat. Ital. A (7) 3(1), 77–85 (1989) Di Vincenzo, O.M.: On the nth centralizer of a Lie ideal. Boll. Un. Mat. Ital. A (7) 3(1), 77–85 (1989)
5.
go back to reference Lanski, C., Montgomery, S.: Lie structure of prime rings of characteristic 2. Pacific J. Math. 42(1), 117–136 (1972)MathSciNetCrossRef Lanski, C., Montgomery, S.: Lie structure of prime rings of characteristic 2. Pacific J. Math. 42(1), 117–136 (1972)MathSciNetCrossRef
6.
go back to reference Beidar, K. I.: Rings with generalized identities. III, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4, 66–73 (1978) [Moscow Univ.Math. Bull., 33, 53–58 (1978)] Beidar, K. I.: Rings with generalized identities. III, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4, 66–73 (1978) [Moscow Univ.Math. Bull., 33, 53–58 (1978)]
7.
8.
go back to reference Lee, T.K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica 20, 27–38 (1992)MathSciNet Lee, T.K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sinica 20, 27–38 (1992)MathSciNet
9.
go back to reference Beidar, K.I., Martindale, III, W. S., Mikhalev, A.V.: Rings with Generalized Identities in Monogr. Textbooks Pure Appl. Math., Marcel Dekker, vol. 196. New York, NY (1996) Beidar, K.I., Martindale, III, W. S., Mikhalev, A.V.: Rings with Generalized Identities in Monogr. Textbooks Pure Appl. Math., Marcel Dekker, vol. 196. New York, NY (1996)
13.
go back to reference Martindale, W.S., III.: Prime rings satisfying a generalized polynomial identity. Algebra 12(4), 576–584 (1969) Martindale, W.S., III.: Prime rings satisfying a generalized polynomial identity. Algebra 12(4), 576–584 (1969)
14.
15.
go back to reference Lanski, C.: Differential identities, Lie ideals, and Posner’s theorems. Pacific J. Math. 134(2), 275–297 (1988)MathSciNetCrossRef Lanski, C.: Differential identities, Lie ideals, and Posner’s theorems. Pacific J. Math. 134(2), 275–297 (1988)MathSciNetCrossRef
16.
go back to reference De Filippis, V., Scudo, G.: Strong commutativity and Engel condition preserving maps in prime and semiprime rings, Published online: 28 Aug 2012 De Filippis, V., Scudo, G.: Strong commutativity and Engel condition preserving maps in prime and semiprime rings, Published online: 28 Aug 2012
17.
go back to reference Kharchenko, V.K.: Differential identity of prime rings. Algebra Logic. 17, 155–168 (1978)CrossRef Kharchenko, V.K.: Differential identity of prime rings. Algebra Logic. 17, 155–168 (1978)CrossRef
18.
go back to reference Erickson, T.S., Martindale, W.S., III., Osborn, J.M.: Prime nonassociative algebras. Pacific J. Math. 60(1), 49–63 (1975)MathSciNetCrossRef Erickson, T.S., Martindale, W.S., III., Osborn, J.M.: Prime nonassociative algebras. Pacific J. Math. 60(1), 49–63 (1975)MathSciNetCrossRef
19.
go back to reference Martindale, W.S., III.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12(4), 576–584 (1969) Martindale, W.S., III.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12(4), 576–584 (1969)
20.
go back to reference Faith, C., Utumi, Y.: On a new proof of Litoff’s theorem. Acta Math. Acad. Sci. Hungar 14(3–4), 369–371 (1963)MathSciNetCrossRef Faith, C., Utumi, Y.: On a new proof of Litoff’s theorem. Acta Math. Acad. Sci. Hungar 14(3–4), 369–371 (1963)MathSciNetCrossRef
21.
go back to reference Prime nonassociative algebras: Erickson, T.S., Martindale, W.S., III., Osborn, J.M. Pacific J. Math. 60, 49–63 (1975)MathSciNet Prime nonassociative algebras: Erickson, T.S., Martindale, W.S., III., Osborn, J.M. Pacific J. Math. 60, 49–63 (1975)MathSciNet
22.
go back to reference Jacobson, N.: Structure of Rings, Amer. Math. Soc. Coll. Pub. 37, Providence, RI, (1964) Jacobson, N.: Structure of Rings, Amer. Math. Soc. Coll. Pub. 37, Providence, RI, (1964)
23.
go back to reference Martindale, W.S., III.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576–584 (1969) Martindale, W.S., III.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576–584 (1969)
Metadata
Title
Commuting Iterates of Generalized Derivations on Lie Ideals
Author
Francesco Ammendolia
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50795-3_23

Premium Partner