Skip to main content
Top
Published in:

24-07-2023

Compact drain current model of a double-gate raised buried oxide TFET for integrated circuit application

Authors: Sirisha Meriga, Brinda Bhowmick

Published in: Journal of Computational Electronics | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A compact model for the drain current of a double-gate tunnel field-effect transistor (TFET) operating in the subthreshold and super-threshold regions is proposed in this paper. Using this drain current model, the key parameter for integrated analog circuit design technology, namely the transconductance-to-drain current ratio, was extracted. As this method is simple, it can be readily implemented for any type of dual-gate TFET with a few fitted parameters. The drain current calculated using this model was compared with the simulated drain current using 2D Sentaurus TCAD software, which validated the performance of the TFET. The proposed method can be adapted to obtain the desired transconductance to operate TFETs in the gigahertz range with very low-milliwatt power consumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Crupi, G., Schreurs, D.M., Raskin, J.P., Caddemi, A.: A comprehensive review on microwave FinFET modelling for progressing beyond the state of art. Solid-State Electron. 80, 81–95 (2013)CrossRef Crupi, G., Schreurs, D.M., Raskin, J.P., Caddemi, A.: A comprehensive review on microwave FinFET modelling for progressing beyond the state of art. Solid-State Electron. 80, 81–95 (2013)CrossRef
2.
go back to reference Anvarifard, M.K., Orouji, A.A.: Enhanced critical electrical characteristics in a nanoscale low-voltage SOI MOSFET with dual tunnel diode. IEEE Trans. Electron Devices 62(5), 1672–1676 (2015)CrossRef Anvarifard, M.K., Orouji, A.A.: Enhanced critical electrical characteristics in a nanoscale low-voltage SOI MOSFET with dual tunnel diode. IEEE Trans. Electron Devices 62(5), 1672–1676 (2015)CrossRef
3.
go back to reference Anvarifard, M.K., Orouji, A.A.: Stopping electric field extension in a modified nanostructure based on SOI technology-a comprehensive numerical study. Superlattices Microstruct. 111, 206–220 (2017)CrossRef Anvarifard, M.K., Orouji, A.A.: Stopping electric field extension in a modified nanostructure based on SOI technology-a comprehensive numerical study. Superlattices Microstruct. 111, 206–220 (2017)CrossRef
4.
go back to reference Hu, C., Patel, P., Bowonder, A., Jeon, K., Kim, S.H., Loh, W.Y., Kang, C.Y., Oh, J., Majhi, P., Javey, A., Liu, T.J.: Prospect of tunneling green transistor for 0.1V CMOS. In: International Electron Devices Meeting. IEEE, pp. 1–16 (2010) Hu, C., Patel, P., Bowonder, A., Jeon, K., Kim, S.H., Loh, W.Y., Kang, C.Y., Oh, J., Majhi, P., Javey, A., Liu, T.J.: Prospect of tunneling green transistor for 0.1V CMOS. In: International Electron Devices Meeting. IEEE, pp. 1–16 (2010)
5.
go back to reference Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef
6.
go back to reference Bangsaruntip, S., Cohen, G.M., Majumdar, A., Sleight, J.W.: Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Device Lett. 31(9), 903–905 (2010)CrossRef Bangsaruntip, S., Cohen, G.M., Majumdar, A., Sleight, J.W.: Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Device Lett. 31(9), 903–905 (2010)CrossRef
7.
go back to reference Kim, S.W., Kim, J.H., Liu, T.-J.K., Choi, W.Y., Park, B.-G.: Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans. Electron Devices 63, 1774–1778 (2016)CrossRef Kim, S.W., Kim, J.H., Liu, T.-J.K., Choi, W.Y., Park, B.-G.: Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans. Electron Devices 63, 1774–1778 (2016)CrossRef
8.
go back to reference Krishna Mohan, T., Kim, D., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling fet (TFET) with record high drive currents and ≪ 60mV/dec subthreshold slope. In: IEEE International Electron Devices Meeting, pp. 1–3 (2008) Krishna Mohan, T., Kim, D., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling fet (TFET) with record high drive currents and ≪ 60mV/dec subthreshold slope. In: IEEE International Electron Devices Meeting, pp. 1–3 (2008)
9.
go back to reference Kim, M., Wakabayashi, Y.K., Nakane, R., Yokoyama, M., Takenaka, M., Takagi, S.: High Ion/Ioff Ge-source ultrathin body strained-SOI tunnel FETs–impact of channel strain, MOS interfaces and back gate on the electrical properties. IEICE Tech. Rep. 114(421), 9–12 (2015) Kim, M., Wakabayashi, Y.K., Nakane, R., Yokoyama, M., Takenaka, M., Takagi, S.: High Ion/Ioff Ge-source ultrathin body strained-SOI tunnel FETs–impact of channel strain, MOS interfaces and back gate on the electrical properties. IEICE Tech. Rep. 114(421), 9–12 (2015)
10.
go back to reference Kim, S.W., Choi, W.Y.: Hump effects of germanium/silicon heterojunction tunnel field-effect transistors. IEEE Trans. Electron Devices 63(6), 2583–2588 (2016)CrossRef Kim, S.W., Choi, W.Y.: Hump effects of germanium/silicon heterojunction tunnel field-effect transistors. IEEE Trans. Electron Devices 63(6), 2583–2588 (2016)CrossRef
11.
go back to reference Ohno, T., Kado, Y., Harada, M., Tsuchiya, T.: Experimental 0.25-/spl mu/m-gate fully depleted CMOS/SIMOX process using a new two-step LOCOS isolation technique. IEEE Trans. Electron Devices 42(8), 1481–1486 (1995)CrossRef Ohno, T., Kado, Y., Harada, M., Tsuchiya, T.: Experimental 0.25-/spl mu/m-gate fully depleted CMOS/SIMOX process using a new two-step LOCOS isolation technique. IEEE Trans. Electron Devices 42(8), 1481–1486 (1995)CrossRef
12.
go back to reference Bardon, M.G., Neves, H.P., Puers, R., Van Hoof, C.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57(4), 827–834 (2010)CrossRef Bardon, M.G., Neves, H.P., Puers, R., Van Hoof, C.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57(4), 827–834 (2010)CrossRef
13.
go back to reference Boucart, K., Ionescu, A.M.: Double gate tunnel FET with ultrathin silicon body and high-k gate dielectric. In: European solid-state device research conference. IEEE, pp 383–386 (2006) Boucart, K., Ionescu, A.M.: Double gate tunnel FET with ultrathin silicon body and high-k gate dielectric. In: European solid-state device research conference. IEEE, pp 383–386 (2006)
14.
go back to reference Dutta, R., Paitya, N.: TCAD performance analysis of PIN tunneling FETS under surrounded gate structure. In: 2nd international conference on advances in science & technology (ICAST) (2019) Dutta, R., Paitya, N.: TCAD performance analysis of PIN tunneling FETS under surrounded gate structure. In: 2nd international conference on advances in science & technology (ICAST) (2019)
15.
go back to reference Dutta, R., Konar, S.C., Paitya, N.: Influence of gate and channel engineering on multigate tunnel FETs: a review. In: Computational Advancement in Communication Circuits and Systems: Proceedings of ICCACCS 2018, pp. 345–355 (2020) Dutta, R., Konar, S.C., Paitya, N.: Influence of gate and channel engineering on multigate tunnel FETs: a review. In: Computational Advancement in Communication Circuits and Systems: Proceedings of ICCACCS 2018, pp. 345–355 (2020)
16.
go back to reference Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRef Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRef
17.
go back to reference Mallik, A., Chattopadhyay, A.: Tunnel field-effect transistors for analog/mixed-signal system-on-chip applications. IEEE Trans. Electron Devices 59(4), 888–894 (2012)CrossRef Mallik, A., Chattopadhyay, A.: Tunnel field-effect transistors for analog/mixed-signal system-on-chip applications. IEEE Trans. Electron Devices 59(4), 888–894 (2012)CrossRef
18.
go back to reference Vittoz, E., Fellrath, J.: CMOS analog integrated circuits based on weak inversion operations. IEEE J. Solid-State Circuits 12(3), 224–231 (1977)CrossRef Vittoz, E., Fellrath, J.: CMOS analog integrated circuits based on weak inversion operations. IEEE J. Solid-State Circuits 12(3), 224–231 (1977)CrossRef
19.
go back to reference Silveira, F., Flandre, D., Jespers, P.G.: A g/sub m//I/sub D/based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA. IEEE J. Solid-State Circuits 31(9), 1314–1319 (1996)CrossRef Silveira, F., Flandre, D., Jespers, P.G.: A g/sub m//I/sub D/based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA. IEEE J. Solid-State Circuits 31(9), 1314–1319 (1996)CrossRef
20.
go back to reference Trivedi, A.R., Carlo, S., Mukhopadhyay, S.: Exploring tunnel-FET for ultralow power analog applications: a case study on operational transconductance amplifier. In: ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, pp. 1–6 (2013) Trivedi, A.R., Carlo, S., Mukhopadhyay, S.: Exploring tunnel-FET for ultralow power analog applications: a case study on operational transconductance amplifier. In: ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, pp. 1–6 (2013)
21.
go back to reference Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A.: A new three-terminal tunnel device. IEEE Electron Device Lett. 8(8), 347–349 (1987)CrossRef Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A.: A new three-terminal tunnel device. IEEE Electron Device Lett. 8(8), 347–349 (1987)CrossRef
22.
go back to reference Vandenberghe, W.G., Verhulst, A.S., Groeseneken, G., Sorée, B., Magnus, W.: Analytical model for a tunnel field-effect transistor. In: Proceedings of the Mediterranean Electrotechnical Conference - MELECON, pp. 923–928 (2008) Vandenberghe, W.G., Verhulst, A.S., Groeseneken, G., Sorée, B., Magnus, W.: Analytical model for a tunnel field-effect transistor. In: Proceedings of the Mediterranean Electrotechnical Conference - MELECON, pp. 923–928 (2008)
23.
go back to reference Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans. Electron Devices 56(9), 2092–2098 (2009)CrossRef Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans. Electron Devices 56(9), 2092–2098 (2009)CrossRef
24.
go back to reference Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30(10), 1102–1104 (2009)CrossRef Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30(10), 1102–1104 (2009)CrossRef
25.
go back to reference Bardon, M.G., Neves, H.P., Peurs, R., Hoof, C.V.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57(4), 827–834 (2010)CrossRef Bardon, M.G., Neves, H.P., Peurs, R., Hoof, C.V.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57(4), 827–834 (2010)CrossRef
26.
go back to reference Syamal, B., Bose, C., Sarkar, C.K., Mohankumar, N.: Effect of single HALO doped channel in tunnel junction: a 2-D modeling study. In: IEEE International Conference on EDSSC, pp. 1–4 (2010) Syamal, B., Bose, C., Sarkar, C.K., Mohankumar, N.: Effect of single HALO doped channel in tunnel junction: a 2-D modeling study. In: IEEE International Conference on EDSSC, pp. 1–4 (2010)
27.
go back to reference Bhowmick, B., Baishya, S.: A physics based model for electrical parameters of double gate hetero-material nano scale tunnel FET. Int. J. Appl. Inf. Syst. 1(3), 25–32 (2012) Bhowmick, B., Baishya, S.: A physics based model for electrical parameters of double gate hetero-material nano scale tunnel FET. Int. J. Appl. Inf. Syst. 1(3), 25–32 (2012)
28.
go back to reference Graef, M., Holtij, T., Hain, F., Kloes, A., Iniguez, B.: Two-dimensional physics-based modeling of electrostatics and band-to-band tunneling in tunnel-FETs. Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2013, pp. 81–85 (2013) Graef, M., Holtij, T., Hain, F., Kloes, A., Iniguez, B.: Two-dimensional physics-based modeling of electrostatics and band-to-band tunneling in tunnel-FETs. Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2013, pp. 81–85 (2013)
29.
go back to reference Kumar, S., Goel, E., Singh, K., Singh, B., Kumar, M., Jit, S.: A compact 2-D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-k stacked gate-oxide structure. IEEE Trans. Electron Devices 63(8), 3291–3299 (2016)CrossRef Kumar, S., Goel, E., Singh, K., Singh, B., Kumar, M., Jit, S.: A compact 2-D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-k stacked gate-oxide structure. IEEE Trans. Electron Devices 63(8), 3291–3299 (2016)CrossRef
30.
go back to reference Goswami, R., Bhowmick, B.: An analytical model of drain current in a nanoscale circular gate TFET. IEEE Trans. Electron Devices 64(1), 45–51 (2017)CrossRef Goswami, R., Bhowmick, B.: An analytical model of drain current in a nanoscale circular gate TFET. IEEE Trans. Electron Devices 64(1), 45–51 (2017)CrossRef
31.
go back to reference Dutta, R., Sarkar, S.K.: Analytical modeling and simulation-based optimization of broken gate TFET structure for low power applications. IEEE Trans. Electron Devices 66(8), 3513–3520 (2019)CrossRef Dutta, R., Sarkar, S.K.: Analytical modeling and simulation-based optimization of broken gate TFET structure for low power applications. IEEE Trans. Electron Devices 66(8), 3513–3520 (2019)CrossRef
32.
go back to reference Kaur, S., Raman, A., Sarin, R.K.: An explicit surface potential, capacitance and drain current model for double-gate TFET. Superlattices Microstruct. 140, 106431 (2020)CrossRef Kaur, S., Raman, A., Sarin, R.K.: An explicit surface potential, capacitance and drain current model for double-gate TFET. Superlattices Microstruct. 140, 106431 (2020)CrossRef
33.
go back to reference Dutta, R., Subash, T., Paitya, N.: Improved DC performance analysis of a novel asymmetric extended source tunnel FET for fast switching application (2021) Dutta, R., Subash, T., Paitya, N.: Improved DC performance analysis of a novel asymmetric extended source tunnel FET for fast switching application (2021)
34.
go back to reference Dutta, R., Subash, T.D., Paitya, N.: Improved DC performance analysis of a novel asymmetric extended source tunnel FET (AES-TFET) for fast switching application. SILICON 14(8), 3835–3841 (2022)CrossRef Dutta, R., Subash, T.D., Paitya, N.: Improved DC performance analysis of a novel asymmetric extended source tunnel FET (AES-TFET) for fast switching application. SILICON 14(8), 3835–3841 (2022)CrossRef
35.
go back to reference Lu, H., Kim, J.W., Esseni, D., Seabaugh, A.: Continuous semiempirical model for the current-voltage characteristics of tunnel FETs. In: 15th International Conference on Ultimate Integration on Silicon (ULIS). IEEE, pp. 25–28 (2014) Lu, H., Kim, J.W., Esseni, D., Seabaugh, A.: Continuous semiempirical model for the current-voltage characteristics of tunnel FETs. In: 15th International Conference on Ultimate Integration on Silicon (ULIS). IEEE, pp. 25–28 (2014)
36.
go back to reference Lu, H., Esseni, D., Seabaugh, A.: Universal analytic model for tunnel FET circuit simulation. Solid-State Electron. 108, 110–117 (2015)CrossRef Lu, H., Esseni, D., Seabaugh, A.: Universal analytic model for tunnel FET circuit simulation. Solid-State Electron. 108, 110–117 (2015)CrossRef
37.
go back to reference Barboni, L., Siniscalchi, M., Sensale-Rodriguez, B.: TFET-based circuit design using the transconductance generation efficiency ${g}{m}/{I}{d} method. IEEE J. Electron Devices Soc. 3(3), 208–216 (2015)CrossRef Barboni, L., Siniscalchi, M., Sensale-Rodriguez, B.: TFET-based circuit design using the transconductance generation efficiency ${g}{m}/{I}{d} method. IEEE J. Electron Devices Soc. 3(3), 208–216 (2015)CrossRef
38.
go back to reference Khairnar, A.G., et al.: Electrical properties of HfO2 high-k thin-film MOS capacitors for advanced CMOS technology. Indian J. Phys. 89, 1177–1181 (2015)CrossRef Khairnar, A.G., et al.: Electrical properties of HfO2 high-k thin-film MOS capacitors for advanced CMOS technology. Indian J. Phys. 89, 1177–1181 (2015)CrossRef
39.
go back to reference Alam, F., et al.: All-water-driven high-k HfO2 gate dielectrics and applications in thin film transistors. Nanomaterials 13(4), 694 (2023)CrossRef Alam, F., et al.: All-water-driven high-k HfO2 gate dielectrics and applications in thin film transistors. Nanomaterials 13(4), 694 (2023)CrossRef
40.
go back to reference Sirisha, M., Bhowmick, B.: Investigation of a dual gate pocket-doped drain engineered tunnel FET and its reliability issues. Appl. Phys. A 129(2), 104 (2023)CrossRef Sirisha, M., Bhowmick, B.: Investigation of a dual gate pocket-doped drain engineered tunnel FET and its reliability issues. Appl. Phys. A 129(2), 104 (2023)CrossRef
41.
go back to reference Khakifirooz, A., Nayfeh, O.M., Antoniadis, D.: A simple semiempirical short-channel MOSFET current–voltage model continuous across all regions of operation and employing only physical parameters. IEEE Trans. Electron Devices 56(8), 1674–1680 (2009)CrossRef Khakifirooz, A., Nayfeh, O.M., Antoniadis, D.: A simple semiempirical short-channel MOSFET current–voltage model continuous across all regions of operation and employing only physical parameters. IEEE Trans. Electron Devices 56(8), 1674–1680 (2009)CrossRef
42.
go back to reference Wright, G.T.: Threshold modelling of MOSFETs for CAD of CMOS-VLSI. Electron. Lett. 6(21), 223–224 (1985)CrossRef Wright, G.T.: Threshold modelling of MOSFETs for CAD of CMOS-VLSI. Electron. Lett. 6(21), 223–224 (1985)CrossRef
43.
go back to reference Boucart, K., Ionescu, A.M.: A new definition of threshold voltage in tunnel FETs. Solid-State Electron. 52(9), 1318–1323 (2008)CrossRef Boucart, K., Ionescu, A.M.: A new definition of threshold voltage in tunnel FETs. Solid-State Electron. 52(9), 1318–1323 (2008)CrossRef
44.
go back to reference Yu, Y.S., Najam, F.: Compact current model of single-gate/double-gate tunneling field-effect transistors. J. Electr. Eng. Technol. 12(5), 2014–2020 (2017) Yu, Y.S., Najam, F.: Compact current model of single-gate/double-gate tunneling field-effect transistors. J. Electr. Eng. Technol. 12(5), 2014–2020 (2017)
45.
go back to reference Sentaurus Device User Guide, Synopsys, Inc. (2011) Sentaurus Device User Guide, Synopsys, Inc. (2011)
Metadata
Title
Compact drain current model of a double-gate raised buried oxide TFET for integrated circuit application
Authors
Sirisha Meriga
Brinda Bhowmick
Publication date
24-07-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02077-x