Skip to main content
Top
Published in: International Journal of Energy and Environmental Engineering 2/2020

24-02-2020 | Original Research

Compactness analysis of PCM-based cooling systems for lithium battery-operated vehicles

Authors: Ravichandra Rangappa, Srithar Rajoo, P. M. Samin, S. Rajesha

Published in: International Journal of Energy and Environmental Engineering | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Demand for sustainable transport system is craving for hybrid and electric vehicles with high-power and high-energy electric storage system for increased range of haul. To support such high-power applications, the Li-Ion battery developers’ trends are to formulate batteries with high discharge rate and high ampere rate of up to 100 Ah. Those batteries would suffer from a drastic increase in heat generation rate, which could increase the temperature of the battery above 313 K (40 °C) under the conventional cooling system. Most of the research works proposed direct liquid cooling or liquid cooling plates to attain sufficient cooling for high ampere battery packs. In the present research, the focus is on a hybrid cooling system that is more versatile in providing a flexible cooling mechanism with various design parameters to control the cooling performance for the battery pack. Through computational fluid dynamics simulations, it is understood that it needs 9 mm thickness for pure phase change material (PCM) cooling system to control the temperature within 313 K (40 °C) for the battery with heat generation rate of 30,046 W/m3. The proposed hybrid cooling system can control the temperature within 313 K (40 °C) for battery with heat generation rate of 120,183 W/m3 applying 6 mm thickness of PCM, thus reducing the overall size of the cooling system by 16.3%. It is also predicted that the hybrid cooling system can further improve its performance by increasing the coolant flow rate beyond 2 L/min. Under the 0.5C discharge condition, hybrid cooling can be manageable with zero pumping losses.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ramadass, P., Haran, B., White, R., Popov, B.N.: Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis. J. Power Sources 112(2), 614–620 (2002)CrossRef Ramadass, P., Haran, B., White, R., Popov, B.N.: Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis. J. Power Sources 112(2), 614–620 (2002)CrossRef
2.
go back to reference Lundgren, C.A., Xu, K., Jow, T.R., Allen, J., Zhang, S.S.: Lithium-ion batteries and materials. In: Breitkopf, C., Swider-Lyons, K. (eds.) Springer handbook of electrochemical energy, pp. 449–495. Springer, Berlin (2017)CrossRef Lundgren, C.A., Xu, K., Jow, T.R., Allen, J., Zhang, S.S.: Lithium-ion batteries and materials. In: Breitkopf, C., Swider-Lyons, K. (eds.) Springer handbook of electrochemical energy, pp. 449–495. Springer, Berlin (2017)CrossRef
4.
go back to reference Tong, W., Somasundaram, K., Birgersson, E., Mujumdar, A.S., Yap, C.: Numerical investigation of water cooling for a lithium-ion bipolar battery pack. Int. J. Therm. Sci. 94, 259–269 (2015)CrossRef Tong, W., Somasundaram, K., Birgersson, E., Mujumdar, A.S., Yap, C.: Numerical investigation of water cooling for a lithium-ion bipolar battery pack. Int. J. Therm. Sci. 94, 259–269 (2015)CrossRef
5.
go back to reference Lan, C., Xu, J., Qiao, Y., Ma, Y.: Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl. Therm. Eng. 101, 284–292 (2016)CrossRef Lan, C., Xu, J., Qiao, Y., Ma, Y.: Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl. Therm. Eng. 101, 284–292 (2016)CrossRef
6.
go back to reference Xu, J., Lan, C., Qiao, Y., Ma, Y.: Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Them. Eng. 110, 883–890 (2017) Xu, J., Lan, C., Qiao, Y., Ma, Y.: Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Them. Eng. 110, 883–890 (2017)
7.
go back to reference Chen, D., Jiang, J., Kim, G., Yang, C., Pesaran, A.: Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 94, 846–854 (2016)CrossRef Chen, D., Jiang, J., Kim, G., Yang, C., Pesaran, A.: Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 94, 846–854 (2016)CrossRef
8.
go back to reference An, Z., et al.: Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel. Appl. Them. Eng. 117, 534–543 (2017)CrossRef An, Z., et al.: Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel. Appl. Them. Eng. 117, 534–543 (2017)CrossRef
9.
go back to reference Rangappa, R., Rajoo, S.: Effect of thermo-physical properties of cooling mass on hybrid cooling for lithium-ion battery pack using design of experiments. Int. J. Energy Environ. Eng. 10(1), 67–83 (2019)CrossRef Rangappa, R., Rajoo, S.: Effect of thermo-physical properties of cooling mass on hybrid cooling for lithium-ion battery pack using design of experiments. Int. J. Energy Environ. Eng. 10(1), 67–83 (2019)CrossRef
10.
go back to reference Taheri, P., Bahrami, M.: Temperature rise in prismatic polymer lithium-ion batteries: an analytic approach. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 5(1), 164–176 (2012)CrossRef Taheri, P., Bahrami, M.: Temperature rise in prismatic polymer lithium-ion batteries: an analytic approach. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 5(1), 164–176 (2012)CrossRef
15.
go back to reference Baczyńska, A., Niewiadomski, W., Gonçalves, A., Almeida, P., Luís, R.: Li-NMC batteries model evaluation with experimental data for electric vehicle application. Batteries 4(1), 11 (2018)CrossRef Baczyńska, A., Niewiadomski, W., Gonçalves, A., Almeida, P., Luís, R.: Li-NMC batteries model evaluation with experimental data for electric vehicle application. Batteries 4(1), 11 (2018)CrossRef
16.
go back to reference Ling, Z., Wang, F., Fang, X., Gao, X., Zhang, Z.: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl. Energy 148, 403–409 (2015)CrossRef Ling, Z., Wang, F., Fang, X., Gao, X., Zhang, Z.: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl. Energy 148, 403–409 (2015)CrossRef
19.
go back to reference Park, C., Co, F. M.: Thermal analysis of cooling system in hybrid electric vehicles. no. 724, (2013) Park, C., Co, F. M.: Thermal analysis of cooling system in hybrid electric vehicles. no. 724, (2013)
20.
go back to reference Javani, N., Dincer, I., Naterer, G.F., Yilbas, B.S.: Heat transfer and thermal management with PCMs in a Li-Ion battery cell for electric vehicles. Int. J. Heat Mass Transf. 72, 690–703 (2014)CrossRef Javani, N., Dincer, I., Naterer, G.F., Yilbas, B.S.: Heat transfer and thermal management with PCMs in a Li-Ion battery cell for electric vehicles. Int. J. Heat Mass Transf. 72, 690–703 (2014)CrossRef
Metadata
Title
Compactness analysis of PCM-based cooling systems for lithium battery-operated vehicles
Authors
Ravichandra Rangappa
Srithar Rajoo
P. M. Samin
S. Rajesha
Publication date
24-02-2020
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Energy and Environmental Engineering / Issue 2/2020
Print ISSN: 2008-9163
Electronic ISSN: 2251-6832
DOI
https://doi.org/10.1007/s40095-020-00339-z

Other articles of this Issue 2/2020

International Journal of Energy and Environmental Engineering 2/2020 Go to the issue