Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 1/2020

06-11-2019 | Research Article - Physics

Comparative Analysis Between Three-Dimensional Flow of Water Conveying Alumina Nanoparticles and Water Conveying Alumina–Iron(III) Oxide Nanoparticles in the Presence of Lorentz Force

Authors: O. K. Koriko, K. S. Adegbie, I. L. Animasaun, A. F. Ijirimoye

Published in: Arabian Journal for Science and Engineering | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the manufacturing companies of the hybrid-powered engine, little is known on the significance of adding iron(III) oxide nanoparticles to an existing alumina–water nanofluid in the presence of Lorentz force. This study presents the three-dimensional flow of water conveying alumina nanoparticles and water conveying alumina/iron(III) oxide nanoparticles within the thin boundary layer formed on a bidirectional linearly stretchable surface. The governing equation that models the transport phenomena was non-dimensionalized and parameterized using the suitable similarity variables. The boundary value problem of the corresponding ordinary differential equation was solved numerically. The technique of slope of the linear regression through the data point was adopted to quantify the observed results. The results of this study show that the addition of Fe3O4 nanoparticles to Al2O3–water nanofluid slightly reduces the motion of the flow at all points from the wall to the free stream. However, the temperature distribution across the flow may be improved. The two components of velocity for the motion of both fluids along x-direction and y-direction increase and decreases across the fluid domain, respectively, when Lorentz force is minimum and maximum due to the significance of stretching rate that is predominant along y-direction. When the stretching rate is small, the maximum velocity along x-direction is ascertained in the flow of nanofluid. Skin friction coefficients in the flow along both directions decrease with both Lorentz force and stretching rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sandeep, N.; Koriko, O.K.; Animasaun, I.L.: Modified kinematic viscosity model for 3D-Casson fluid flow within boundary layer formed on a surface at absolute zero. J. Mol. Liq. 221, 1197–1206 (2016)CrossRef Sandeep, N.; Koriko, O.K.; Animasaun, I.L.: Modified kinematic viscosity model for 3D-Casson fluid flow within boundary layer formed on a surface at absolute zero. J. Mol. Liq. 221, 1197–1206 (2016)CrossRef
2.
go back to reference Howarth, L.: CXLIV. The boundary layer in three-dimensional flow-Part II. The flow near a stagnation point. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(335), 1433–1440 (1951)MathSciNetCrossRef Howarth, L.: CXLIV. The boundary layer in three-dimensional flow-Part II. The flow near a stagnation point. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(335), 1433–1440 (1951)MathSciNetCrossRef
3.
go back to reference Chong, M.S.; Perry, A.E.; Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A Fluid Dyn. 2(5), 765–777 (1990)MathSciNetCrossRef Chong, M.S.; Perry, A.E.; Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A Fluid Dyn. 2(5), 765–777 (1990)MathSciNetCrossRef
4.
go back to reference Niknia, N.; Keshavarzi, A.: 3D flow velocity pattern in a circular section within river reach: an experimental study. Arab. J. Sci. Eng. 39(6), 4377–4389 (2014)CrossRef Niknia, N.; Keshavarzi, A.: 3D flow velocity pattern in a circular section within river reach: an experimental study. Arab. J. Sci. Eng. 39(6), 4377–4389 (2014)CrossRef
5.
go back to reference Ramzan, M.; Yousaf, F.: Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating. AIP Adv. 5(5), 057132 (2015)CrossRef Ramzan, M.; Yousaf, F.: Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating. AIP Adv. 5(5), 057132 (2015)CrossRef
6.
go back to reference Hayat, T.; Imtiaz, M.; Almezal, S.: Modeling and analysis for three-dimensional flow with homogeneous-heterogeneous reactions. AIP Adv. 5(10), 107209 (2015)CrossRef Hayat, T.; Imtiaz, M.; Almezal, S.: Modeling and analysis for three-dimensional flow with homogeneous-heterogeneous reactions. AIP Adv. 5(10), 107209 (2015)CrossRef
7.
go back to reference Zhao, Q.; Xu, H.; Tao, L.; Raees, A.; Sun, Q.: Three-dimensional free bio-convection of nanofluid near stagnation point on general curved isothermal surface. Appl. Math. Mech. 37(4), 417–432 (2016)MathSciNetCrossRef Zhao, Q.; Xu, H.; Tao, L.; Raees, A.; Sun, Q.: Three-dimensional free bio-convection of nanofluid near stagnation point on general curved isothermal surface. Appl. Math. Mech. 37(4), 417–432 (2016)MathSciNetCrossRef
8.
go back to reference Nayak, M.K.; Shaw, S.; Chamkha, A.J.: 3D MHD free convective stretched flow of a radiative nanofluid inspired by variable magnetic field. Arab. J. Sci. Eng. 44(2), 1269–1282 (2019)CrossRef Nayak, M.K.; Shaw, S.; Chamkha, A.J.: 3D MHD free convective stretched flow of a radiative nanofluid inspired by variable magnetic field. Arab. J. Sci. Eng. 44(2), 1269–1282 (2019)CrossRef
9.
go back to reference Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 21(4), 645–647 (1970)CrossRef Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 21(4), 645–647 (1970)CrossRef
10.
go back to reference Gupta, P.S.; Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55(6), 744–746 (1977)CrossRef Gupta, P.S.; Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55(6), 744–746 (1977)CrossRef
11.
go back to reference Magyari, E.; Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B. Fluids 19(1), 109–122 (2000)MathSciNetCrossRef Magyari, E.; Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B. Fluids 19(1), 109–122 (2000)MathSciNetCrossRef
12.
go back to reference Cortell, R.: Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A 372(5), 631–636 (2008)CrossRef Cortell, R.: Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A 372(5), 631–636 (2008)CrossRef
13.
go back to reference Hayat, T.; Awais, M.; Obaidat, S.: Three-dimensional flow of a Jeffery fluid over a linearly stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 17(2), 699–707 (2012)MathSciNetCrossRef Hayat, T.; Awais, M.; Obaidat, S.: Three-dimensional flow of a Jeffery fluid over a linearly stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 17(2), 699–707 (2012)MathSciNetCrossRef
14.
go back to reference Nadeem, S.; Lee, C.: Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. 7(1), 94 (2012)CrossRef Nadeem, S.; Lee, C.: Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. 7(1), 94 (2012)CrossRef
15.
go back to reference Animasaun, I.L.; Adebile, E.A.; Fagbade, A.I.: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J. Niger. Math. Soc. 35(1), 1–17 (2016)MathSciNetCrossRef Animasaun, I.L.; Adebile, E.A.; Fagbade, A.I.: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J. Niger. Math. Soc. 35(1), 1–17 (2016)MathSciNetCrossRef
16.
go back to reference Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A.: On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int. J. Heat Mass Transf. 100, 566–572 (2016)CrossRef Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A.: On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int. J. Heat Mass Transf. 100, 566–572 (2016)CrossRef
17.
go back to reference Ting, L.: Boundary layer theory to matched asymptotics. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. Appl. Math. Mech. 80(11–12), 845–855 (2000)MathSciNetCrossRef Ting, L.: Boundary layer theory to matched asymptotics. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. Appl. Math. Mech. 80(11–12), 845–855 (2000)MathSciNetCrossRef
18.
go back to reference Olubode, K.K.; John, O.; Lare, A.I.: Effects of some thermo-physical parameters on free convective heat and mass transfer over vertical stretching surface at absolute zero. J. Heat Mass Transf. Res. (JHMTR) 3(1), 31–46 (2016) Olubode, K.K.; John, O.; Lare, A.I.: Effects of some thermo-physical parameters on free convective heat and mass transfer over vertical stretching surface at absolute zero. J. Heat Mass Transf. Res. (JHMTR) 3(1), 31–46 (2016)
19.
go back to reference Omowaye, A.J.; Koriko, O.K.: Steady arrhenius laminar free convective MHD flow and heat transfer past a vertical stretching sheet with viscous dissipation. J. Niger. Math. Soc. 33, 259–271 (2014)MathSciNetMATH Omowaye, A.J.; Koriko, O.K.: Steady arrhenius laminar free convective MHD flow and heat transfer past a vertical stretching sheet with viscous dissipation. J. Niger. Math. Soc. 33, 259–271 (2014)MathSciNetMATH
20.
go back to reference Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)CrossRef Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)CrossRef
21.
go back to reference Azizian, R.; Doroodchi, E.; McKrell, T.; Buongiorno, J.; Hu, L.W.; Moghtaderi, B.: Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. Int. J. Heat Mass Transf. 68, 94–109 (2014)CrossRef Azizian, R.; Doroodchi, E.; McKrell, T.; Buongiorno, J.; Hu, L.W.; Moghtaderi, B.: Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. Int. J. Heat Mass Transf. 68, 94–109 (2014)CrossRef
22.
go back to reference Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M.: Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 388(1–3), 41–48 (2011)CrossRef Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M.: Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 388(1–3), 41–48 (2011)CrossRef
23.
go back to reference Moghadassi, A.; Ghomi, E.; Parvizian, F.: A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 92, 50–57 (2015)CrossRef Moghadassi, A.; Ghomi, E.; Parvizian, F.: A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 92, 50–57 (2015)CrossRef
24.
go back to reference Madhesh, D.; Kalaiselvam, S.: Experimental analysis of hybrid nanofluid as a coolant. Procedia Eng. 97, 1667–1675 (2014)CrossRef Madhesh, D.; Kalaiselvam, S.: Experimental analysis of hybrid nanofluid as a coolant. Procedia Eng. 97, 1667–1675 (2014)CrossRef
25.
go back to reference Megatif, L.; Ghozatloo, A.; Arimi, A.; Shariati-Niasar, M.: Investigation of laminar convective heat transfer of a novel TiO2–carbon nanotube hybrid water-based nanofluid. Exp. Heat Transf. 29(1), 124–138 (2016)CrossRef Megatif, L.; Ghozatloo, A.; Arimi, A.; Shariati-Niasar, M.: Investigation of laminar convective heat transfer of a novel TiO2–carbon nanotube hybrid water-based nanofluid. Exp. Heat Transf. 29(1), 124–138 (2016)CrossRef
26.
go back to reference Takabi, B.; Shokouhmand, H.: Effects of Al2O3–Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime. Int. J. Mod. Phys. C (IJMPC) 26(04), 1–25 (2015) Takabi, B.; Shokouhmand, H.: Effects of Al2O3–Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime. Int. J. Mod. Phys. C (IJMPC) 26(04), 1–25 (2015)
27.
go back to reference Shah, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)CrossRef Shah, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)CrossRef
28.
go back to reference Animasaun, I.L.; Koriko, O.K.; Mahanthesh, B.; Dogonchi, A.S.: A note on the significance of quartic autocatalysis chemical reaction on the motion of air conveying dust particles. Z. Naturforschung A 74(10), 879–904 (2019)CrossRef Animasaun, I.L.; Koriko, O.K.; Mahanthesh, B.; Dogonchi, A.S.: A note on the significance of quartic autocatalysis chemical reaction on the motion of air conveying dust particles. Z. Naturforschung A 74(10), 879–904 (2019)CrossRef
29.
go back to reference Animasaun, I.L.; Ibraheem, R.O.; Mahanthesh, B.; Babatunde, H.A.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin. J. Phys. 60, 676–687 (2019)MathSciNetCrossRef Animasaun, I.L.; Ibraheem, R.O.; Mahanthesh, B.; Babatunde, H.A.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin. J. Phys. 60, 676–687 (2019)MathSciNetCrossRef
30.
go back to reference Animasaun, I.L.; Koriko, O.K.; Adegbie, K.S.; Babatunde, H.A.; Ibraheem, R.O.; Sandeep, N.; Mahanthesh, B.: Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J. Therm. Anal. Calorim. 135(2), 873–886 (2018). https://doi.org/10.1007/s10973-018-7379-4 CrossRef Animasaun, I.L.; Koriko, O.K.; Adegbie, K.S.; Babatunde, H.A.; Ibraheem, R.O.; Sandeep, N.; Mahanthesh, B.: Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J. Therm. Anal. Calorim. 135(2), 873–886 (2018). https://​doi.​org/​10.​1007/​s10973-018-7379-4 CrossRef
Metadata
Title
Comparative Analysis Between Three-Dimensional Flow of Water Conveying Alumina Nanoparticles and Water Conveying Alumina–Iron(III) Oxide Nanoparticles in the Presence of Lorentz Force
Authors
O. K. Koriko
K. S. Adegbie
I. L. Animasaun
A. F. Ijirimoye
Publication date
06-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 1/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04223-9

Other articles of this Issue 1/2020

Arabian Journal for Science and Engineering 1/2020 Go to the issue

Premium Partners