Skip to main content
Top
Published in: Optical and Quantum Electronics 4/2019

01-04-2019

Comparative analysis of silicon and black phosphorous as an add-layer in nanomaterial based plasmonic sensor

Authors: J. B. Maurya, Y. K. Prajapati

Published in: Optical and Quantum Electronics | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the proposed article silicon and black phosphorous as an add-layer above the plasmonic metal in nanomaterial (graphene and MoS2) based plasmonic sensor are compared. The reflectance curves are obtained for different thickness of silicon and black phosphorous by using transfer matrix method. The performance defining parameters i.e. shift in resonance angle, beam width of reflectance curve, and minimum reflectance intensity for a minute change of 0.005 in refractive index of sensing medium at the optimized thickness 5 nm of silicon and black-phosphorous, and conventional are (13.86, 10.96, 2.415), (4.956, 3.817, 1.419), and (0.012, 0.002, 0.002) respectively. Further, the addition of nanomaterials increases these parameters and generally follows the order MoS2-graphene > MoS2 > graphene. Furthermore, transverse-magnetic electric field shows that nanomaterial covered silicon have higher penetration depth than the nanomaterial covered black-phosphorous. The analysis shows that nanomaterial covered silicon can replace nanomaterial covered black-phosphorous in terms of higher sensitivity and penetration depth.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agarwal, S., Prajapati, Y.K., Maurya, J.B.: Effect of metallic adhesion layer thickness on surface roughness for sensing application. IEEE Photonics Technol. Lett. 28(21), 2415–2418 (2016)ADSCrossRef Agarwal, S., Prajapati, Y.K., Maurya, J.B.: Effect of metallic adhesion layer thickness on surface roughness for sensing application. IEEE Photonics Technol. Lett. 28(21), 2415–2418 (2016)ADSCrossRef
go back to reference Aspnes, D.E., Studna, A.A.: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev. Phys. Rev. B 27(2), 985–1009 (1983)ADSCrossRef Aspnes, D.E., Studna, A.A.: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev. Phys. Rev. B 27(2), 985–1009 (1983)ADSCrossRef
go back to reference Cui, S., Haihui, P., Wells, S.A., Wen, Z., Mao, S., Chang, J., Hersam, M.C., Chen, J.: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632–8640 (2015)ADSCrossRef Cui, S., Haihui, P., Wells, S.A., Wen, Z., Mao, S., Chang, J., Hersam, M.C., Chen, J.: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632–8640 (2015)ADSCrossRef
go back to reference Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRef Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRef
go back to reference Kravets, V.G., Jalil, R., Kim, Y.-J., Ansell, D., Aznakayeva, D.E., Thackray, B., Britnell, L., et al.: Graphene-protected copper and silver plasmonics. Sci. Rep. 4, 5517–5524 (2014)CrossRef Kravets, V.G., Jalil, R., Kim, Y.-J., Ansell, D., Aznakayeva, D.E., Thackray, B., Britnell, L., et al.: Graphene-protected copper and silver plasmonics. Sci. Rep. 4, 5517–5524 (2014)CrossRef
go back to reference Kretschmann, E., Raether, H.: Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12), 2135–2136 (1968)ADSCrossRef Kretschmann, E., Raether, H.: Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12), 2135–2136 (1968)ADSCrossRef
go back to reference Kumar, V., Brent, J.R., Shorie, M., Kaur, H., Chadha, G., Thomas, A.G., Lewis, E.A., Rooney, A.P., Nguyen, L., Zhong, X.L., Burke, M.G.: Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces. 8(35), 22860–22868 (2016)CrossRef Kumar, V., Brent, J.R., Shorie, M., Kaur, H., Chadha, G., Thomas, A.G., Lewis, E.A., Rooney, A.P., Nguyen, L., Zhong, X.L., Burke, M.G.: Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces. 8(35), 22860–22868 (2016)CrossRef
go back to reference Laursen, A.B., Pedersen, T., Malacrida, P., Seger, B., Hansen, O., Vesborg, P.C., Chorkendorff, I.: MoS2—an integrated protective and active layer on n + p-Si for solar H 2 evolution. Phys. Chem. Chem. Phys. 15(46), 20000–20004 (2013)CrossRef Laursen, A.B., Pedersen, T., Malacrida, P., Seger, B., Hansen, O., Vesborg, P.C., Chorkendorff, I.: MoS2—an integrated protective and active layer on n + p-Si for solar H 2 evolution. Phys. Chem. Chem. Phys. 15(46), 20000–20004 (2013)CrossRef
go back to reference Liu, H., Han, N., Zhao, J.: Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties. Rsc Adv. 5(23), 17572–17581 (2015)CrossRef Liu, H., Han, N., Zhao, J.: Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties. Rsc Adv. 5(23), 17572–17581 (2015)CrossRef
go back to reference Maurya, J.B., Prajapati, Y. K.: Method to determine beam width of a dip in surface plasmon resonance sensor and its application thereof. Indian Patent 11005417 A (2016a) Maurya, J.B., Prajapati, Y. K.: Method to determine beam width of a dip in surface plasmon resonance sensor and its application thereof. Indian Patent 11005417 A (2016a)
go back to reference Maurya, J.B., Prajapati, Y.K.: A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt. Quant. Electron. 48(5), 280–291 (2016b)CrossRef Maurya, J.B., Prajapati, Y.K.: A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt. Quant. Electron. 48(5), 280–291 (2016b)CrossRef
go back to reference Maurya, J.B., Prajapati, Y.K.: Influence of dielectric coating on performance of surface plasmon resonance sensor. Plasmonics 12(4), 1121–1130 (2017a)CrossRef Maurya, J.B., Prajapati, Y.K.: Influence of dielectric coating on performance of surface plasmon resonance sensor. Plasmonics 12(4), 1121–1130 (2017a)CrossRef
go back to reference Maurya, J.B., Prajapati, Y.K.: A novel method to calculate beam width of spr reflectance curve: a comparative analysis. IEEE Sens. Lett. 1, 1–10 (2017b)CrossRef Maurya, J.B., Prajapati, Y.K.: A novel method to calculate beam width of spr reflectance curve: a comparative analysis. IEEE Sens. Lett. 1, 1–10 (2017b)CrossRef
go back to reference Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P.: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 121(2), 525–533 (2015a)ADSCrossRef Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P.: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 121(2), 525–533 (2015a)ADSCrossRef
go back to reference Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Performance of graphene–MoS2 based surface plasmon resonance sensor using Silicon layer. Opt. Quantum Electron. 47(11), 3599–3611 (2015b)CrossRef Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Performance of graphene–MoS2 based surface plasmon resonance sensor using Silicon layer. Opt. Quantum Electron. 47(11), 3599–3611 (2015b)CrossRef
go back to reference Maurya, J.B., Prajapati, Y.K., Tripathi, R.: Effect of molybdenum disulfide layer on surface plasmon resonance biosensor for the detection of bacteria. Silicon 10, 245–256 (2016a)CrossRef Maurya, J.B., Prajapati, Y.K., Tripathi, R.: Effect of molybdenum disulfide layer on surface plasmon resonance biosensor for the detection of bacteria. Silicon 10, 245–256 (2016a)CrossRef
go back to reference Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Opt. Commun. 359, 426–434 (2016b)ADSCrossRef Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Opt. Commun. 359, 426–434 (2016b)ADSCrossRef
go back to reference McGaughey, G.B., Gagné, M., Rappé, A.K.: π-Stacking interactions alive and well in proteins. J. Biol. Chem. 273(25), 15458–15463 (1998)CrossRef McGaughey, G.B., Gagné, M., Rappé, A.K.: π-Stacking interactions alive and well in proteins. J. Biol. Chem. 273(25), 15458–15463 (1998)CrossRef
go back to reference Pal, S., Verma, A., Prajapati, Y.K., Saini, J.P.: Influence of black phosphorous on performance of surface plasmon resonance biosensor. Opt. Quantum Electron. 49(12), 403–415 (2017)CrossRef Pal, S., Verma, A., Prajapati, Y.K., Saini, J.P.: Influence of black phosphorous on performance of surface plasmon resonance biosensor. Opt. Quantum Electron. 49(12), 403–415 (2017)CrossRef
go back to reference Pal, S., Verma, A., Raikwar, S., Prajapati, Y.K., Saini, J.P.: Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor. Appl. Phys. A 124, 394–404 (2018)ADSCrossRef Pal, S., Verma, A., Raikwar, S., Prajapati, Y.K., Saini, J.P.: Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor. Appl. Phys. A 124, 394–404 (2018)ADSCrossRef
go back to reference Pockrand, I.: Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72(3), 577–588 (1978)ADSCrossRef Pockrand, I.: Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72(3), 577–588 (1978)ADSCrossRef
go back to reference Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, pp. 4–39. Springer, Berlin (1988) Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, pp. 4–39. Springer, Berlin (1988)
go back to reference Shalabney, A., Abdulhalim, I.: Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuators A: Phys. 159(1), 24–32 (2010)CrossRef Shalabney, A., Abdulhalim, I.: Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuators A: Phys. 159(1), 24–32 (2010)CrossRef
go back to reference Sofer, Z., Sedmidubský, D., Huber, Š., Luxa, J., Bouša, D., Boothroyd, C., Pumera, M.: Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties. Angew. Chem. Int. Ed. 55(10), 3382–3386 (2016)CrossRef Sofer, Z., Sedmidubský, D., Huber, Š., Luxa, J., Bouša, D., Boothroyd, C., Pumera, M.: Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties. Angew. Chem. Int. Ed. 55(10), 3382–3386 (2016)CrossRef
go back to reference Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. JOSA B6(2), 209–220 (1989)ADSCrossRef Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. JOSA B6(2), 209–220 (1989)ADSCrossRef
go back to reference Wu, L., Chu, H.S., Koh, W.S., Li, E.P.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)ADSCrossRef Wu, L., Chu, H.S., Koh, W.S., Li, E.P.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)ADSCrossRef
go back to reference Wu, L., Guo, J., Wang, Q., Lu, S., Dai, X., Xiang, Y.J., Fan, D.: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B: Chem. 249, 542–548 (2017)CrossRef Wu, L., Guo, J., Wang, Q., Lu, S., Dai, X., Xiang, Y.J., Fan, D.: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B: Chem. 249, 542–548 (2017)CrossRef
go back to reference Xu, R., Yang, J., Zhu, Y., Yan, H., Pei, J., Myint, Y.W., Zhang, S., Lu, Y.: Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene–gold hybrid systems. Nanoscale 8(1), 129–135 (2016)ADSCrossRef Xu, R., Yang, J., Zhu, Y., Yan, H., Pei, J., Myint, Y.W., Zhang, S., Lu, Y.: Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene–gold hybrid systems. Nanoscale 8(1), 129–135 (2016)ADSCrossRef
go back to reference Yew, Y.T., Sofer, Z., Mayorga-Martinez, C.C., Pumera, M.: Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front. 1(6), 1130–1136 (2017)CrossRef Yew, Y.T., Sofer, Z., Mayorga-Martinez, C.C., Pumera, M.: Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front. 1(6), 1130–1136 (2017)CrossRef
go back to reference Zeng, S., Siyi, H., Xia, J., Anderson, T., Dinh, X.-Q., Meng, X.-M., Coquet, P., Yong, K.-T.: Graphene–MoS 2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B: Chem. 207, 801–810 (2015)CrossRef Zeng, S., Siyi, H., Xia, J., Anderson, T., Dinh, X.-Q., Meng, X.-M., Coquet, P., Yong, K.-T.: Graphene–MoS 2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B: Chem. 207, 801–810 (2015)CrossRef
go back to reference Zhu, C., Zeng, Z., Li, H., Li, F., Fan, C., Zhang, H.: Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135(16), 5998–6001 (2013)CrossRef Zhu, C., Zeng, Z., Li, H., Li, F., Fan, C., Zhang, H.: Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135(16), 5998–6001 (2013)CrossRef
Metadata
Title
Comparative analysis of silicon and black phosphorous as an add-layer in nanomaterial based plasmonic sensor
Authors
J. B. Maurya
Y. K. Prajapati
Publication date
01-04-2019
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 4/2019
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-019-1814-z

Other articles of this Issue 4/2019

Optical and Quantum Electronics 4/2019 Go to the issue