Skip to main content
Top

2018 | OriginalPaper | Chapter

Comparative Energy, Exergy, and Environmental Analyses of Parabolic Trough Solar Thermal Power Plant Using Nanofluids

Authors : Abid Muhammad, T. A. H. Ratlamwala, Atikol Ugur

Published in: Exergy for A Better Environment and Improved Sustainability 1

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This comparative study focuses on energy, exergy, and environmental analyses of parabolic trough solar thermal power plant working on four different fluids. Two of the four fluids used are nanofluids, aluminum oxide (Al2O3) and ferrous oxide (Fe2O3). The other two fluids are glycerol and Therminol 66 which are oils. Two operating parameters, ambient temperature (T0) and solar irradiance (Gb), are varied to observe their effect on the heat rate produced, net power produced, energy efficiency, exergy efficiency, and environmental impact of parabolic trough solar thermal power plant (PTSTPP). The results obtained show that the energy and exergy efficiencies increase by increasing the solar irradiance. The energy efficiency of parabolic trough solar collector (PTSC) running on four different fluids, aluminum oxide, ferrous oxide, glycerol, and therminol, increases from 52.53% to 79.29%, 52.2% to 78.65%, 52.53% to 79.15%, and 53.17% to 80.13%, respectively, with increase in solar irradiance from 400 W/m2 to 1100 W/m2. The exergy efficiency of PTSC for the tested fluids increases from 24.68% to 41.91%, 24.64% to 42.3%, 24.67% to 42%, and 24.72% to 41.33%, respectively, by increasing the solar irradiance. The net power produced by parabolic trough solar thermal power plant (PTSTPP) is found to be increasing from 76.55 to 81.51 kW, 74.25 to 79.17 kW, 76.08 to 81.03 kW, and 100.2 to 106.5 kW, respectively, with increase in ambient temperature from 275 to 325 K. The exergo-environmental impact index for the four fluids decreases from 3.379 to 3.072, 3.419 to 3.102, 3.388 to 3.079, and 2.435 to 2.202, respectively, by increasing the ambient temperature from 275 K to 325 K. It was observed that the use of nanofluid enhances the net power output of the solar thermal power plant. The analyses also show that increase in ambient temperature and solar irradiance considerably affects the exergetic efficiency and environmental impact of parabolic trough solar thermal power plant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmadi, P., Dincer, I., Rosen, M.A.: Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Convers. Manag. 64, 447–453 (2012)CrossRef Ahmadi, P., Dincer, I., Rosen, M.A.: Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Convers. Manag. 64, 447–453 (2012)CrossRef
go back to reference Choi, S.U.S., Eastman, J. A.: Enhanced heat transfer using nanofluids. U.S. Patent. 6221, 275, 2001 Choi, S.U.S., Eastman, J. A.: Enhanced heat transfer using nanofluids. U.S. Patent. 6221, 275, 2001
go back to reference Dincer, I. and Ratlamwala, T. A. H.: Solar thermal power systems. Earth Systems and Environmental Sciences, 05931 (2013) Dincer, I. and Ratlamwala, T. A. H.: Solar thermal power systems. Earth Systems and Environmental Sciences, 05931 (2013)
go back to reference Dincer, I., Rosen, M.A.: Exergy, Energy, Environment and Sustainable Development. Elsevier, Oxford (2007) Dincer, I., Rosen, M.A.: Exergy, Energy, Environment and Sustainable Development. Elsevier, Oxford (2007)
go back to reference Fan, X., Tan, J., Zhang, G., Zhang, F.: Isolation of carbon nanohorns assemblies and their potential for intracellular delivery. Nanotechnology. 18(195103), 1–6 (2007) Fan, X., Tan, J., Zhang, G., Zhang, F.: Isolation of carbon nanohorns assemblies and their potential for intracellular delivery. Nanotechnology. 18(195103), 1–6 (2007)
go back to reference Grimm, A.: Powdered aluminum-containing heat transfer fluids. German patent DE 4131516 A1, 1993 Grimm, A.: Powdered aluminum-containing heat transfer fluids. German patent DE 4131516 A1, 1993
go back to reference Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., Takahashi, K.: Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309(3–4), 165–170 (1999)CrossRef Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., Takahashi, K.: Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309(3–4), 165–170 (1999)CrossRef
go back to reference Kalogirou, S.A.: Solar Energy Engineering: Processes and Systems. Elsevier Inc, London (2009) Kalogirou, S.A.: Solar Energy Engineering: Processes and Systems. Elsevier Inc, London (2009)
go back to reference Lenert, A., Wang, E.N.: Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol. Energy. 86, 253–265 (2012)CrossRef Lenert, A., Wang, E.N.: Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol. Energy. 86, 253–265 (2012)CrossRef
go back to reference Li, Y., Zhou, J., Tung, S., Schneider, E., Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technol. 196, 89–101 (2009)CrossRef Li, Y., Zhou, J., Tung, S., Schneider, E., Xi, S.: A review on development of nanofluid preparation and characterization. Powder Technol. 196, 89–101 (2009)CrossRef
go back to reference Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of g- Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan). 7, 227–233 (1993)CrossRef Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of g- Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan). 7, 227–233 (1993)CrossRef
go back to reference Mercatelli, L., Sani, E., Zaccanti, G., Martelli, F., Ninni, D.P., Barison, S., Pagura, C., Agresti, F., Jafrancesco, D.: Absorption and scattering properties of carbon nanohorn-based nanofluid for direct sunlight absorbers. Nanoscale Res. Lett. 6(1), 282 (2011)CrossRef Mercatelli, L., Sani, E., Zaccanti, G., Martelli, F., Ninni, D.P., Barison, S., Pagura, C., Agresti, F., Jafrancesco, D.: Absorption and scattering properties of carbon nanohorn-based nanofluid for direct sunlight absorbers. Nanoscale Res. Lett. 6(1), 282 (2011)CrossRef
go back to reference Natarajan, E., Sathish, R.: Role of nanofluids in solar water heater. Int. J. Adv. Manuf. Technol. (2009). doi:10.1007/S00170-008-1876-8 Natarajan, E., Sathish, R.: Role of nanofluids in solar water heater. Int. J. Adv. Manuf. Technol. (2009). doi:10.1007/S00170-008-1876-8
go back to reference Otanicar, T., Phelan, P.E., Prasher, R.S., Rosengarten, G., Taylor, R.A.: Nanofluid based direct absorption solar collector. J. Renew. Sust. Energy. 2, 033102 (2010)CrossRef Otanicar, T., Phelan, P.E., Prasher, R.S., Rosengarten, G., Taylor, R.A.: Nanofluid based direct absorption solar collector. J. Renew. Sust. Energy. 2, 033102 (2010)CrossRef
go back to reference Otanicar, T., Golden, J.: Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environ. Sci. Technol. 43, 6082–6087 (2009)CrossRef Otanicar, T., Golden, J.: Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environ. Sci. Technol. 43, 6082–6087 (2009)CrossRef
go back to reference Ratlamwala, T.A.H., Dincer, I.: performance assessment of solar-based integrated Cu–Cl systems for hydrogen production. Sol. Energy. 95, 345–356 (2013)CrossRef Ratlamwala, T.A.H., Dincer, I.: performance assessment of solar-based integrated Cu–Cl systems for hydrogen production. Sol. Energy. 95, 345–356 (2013)CrossRef
go back to reference Ratlamwala, T.A.H., Dincer, I., Aydin, M.: Energy and exergy analyses and optimization study of an integrated solar heliostat field system for hydrogen production. Int. J. Hydrog. Energy. 37, 18704–18712 (2012)CrossRef Ratlamwala, T.A.H., Dincer, I., Aydin, M.: Energy and exergy analyses and optimization study of an integrated solar heliostat field system for hydrogen production. Int. J. Hydrog. Energy. 37, 18704–18712 (2012)CrossRef
go back to reference Ratlamwala, T.A.H., Dincer, I., Reddy, V.B.: Exergetic and Environmental Impact Assessment of an Integrated System for Utilization of Excess Power from Thermal Power Plant. Springer Science+Business Media, New York (2013)CrossRef Ratlamwala, T.A.H., Dincer, I., Reddy, V.B.: Exergetic and Environmental Impact Assessment of an Integrated System for Utilization of Excess Power from Thermal Power Plant. Springer Science+Business Media, New York (2013)CrossRef
go back to reference Rosen, M.A., Dincer, I., Kanoglu, M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy. 36(1), 128–137 (2008)CrossRef Rosen, M.A., Dincer, I., Kanoglu, M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy. 36(1), 128–137 (2008)CrossRef
go back to reference Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sust. Energ. Rev. 15, 1646–1668 (2011b)CrossRef Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sust. Energ. Rev. 15, 1646–1668 (2011b)CrossRef
go back to reference Saidur, R., Kazi, S.N., Hossain, M.S., Rahman, M.M., Mohammed, H.A.: A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew. Sust. Energy Rev. 15, 310–323 (2011a)CrossRef Saidur, R., Kazi, S.N., Hossain, M.S., Rahman, M.M., Mohammed, H.A.: A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew. Sust. Energy Rev. 15, 310–323 (2011a)CrossRef
go back to reference Sani, E., Barison, S., Pagura, C., Mercatelli, L., Sansoni, P., Fontani, D.: Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt. Express. 18(5), 5180–5187 (2010)CrossRef Sani, E., Barison, S., Pagura, C., Mercatelli, L., Sansoni, P., Fontani, D.: Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt. Express. 18(5), 5180–5187 (2010)CrossRef
go back to reference Taylor, R.A., Phelan, P.E., Otanicar, T.P., Adrian, R., Prasher, R.: Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res. Lett. 6(1), 1–11 (2011)CrossRef Taylor, R.A., Phelan, P.E., Otanicar, T.P., Adrian, R., Prasher, R.: Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res. Lett. 6(1), 1–11 (2011)CrossRef
go back to reference Thomas, S., Sobhan, C.: A review of experimental investigations on thermal phenomena in nanofluids. Nanoscale Res. Lett. 6, 377 (2011)CrossRef Thomas, S., Sobhan, C.: A review of experimental investigations on thermal phenomena in nanofluids. Nanoscale Res. Lett. 6, 377 (2011)CrossRef
go back to reference Tyagi, H., Phelan, P., Prasher, R.: Predicted efficiency of a low-temperature nanofluid based direct absorption solar collector. J. Sol. Energy Eng. 131, 041004–041001 (2009)CrossRef Tyagi, H., Phelan, P., Prasher, R.: Predicted efficiency of a low-temperature nanofluid based direct absorption solar collector. J. Sol. Energy Eng. 131, 041004–041001 (2009)CrossRef
go back to reference Yousefi, T., Veisy, F., Shojaeizadeh, E., Zinadini, S.: An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors. Exp. Thermal. Fluid Sci. 39, 207–212 (2012a)CrossRef Yousefi, T., Veisy, F., Shojaeizadeh, E., Zinadini, S.: An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors. Exp. Thermal. Fluid Sci. 39, 207–212 (2012a)CrossRef
go back to reference Yousefi, T., Veysi, F., Shojaeizadeh, E., Zinadini, S.: An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy. 39, 293–298 (2012b)CrossRef Yousefi, T., Veysi, F., Shojaeizadeh, E., Zinadini, S.: An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy. 39, 293–298 (2012b)CrossRef
Metadata
Title
Comparative Energy, Exergy, and Environmental Analyses of Parabolic Trough Solar Thermal Power Plant Using Nanofluids
Authors
Abid Muhammad
T. A. H. Ratlamwala
Atikol Ugur
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-62572-0_61