Skip to main content
Top
Published in: Metallurgist 3-4/2022

08-08-2022

Comparative Studies into Composition and Properties of FPR-23 and Biomag Covering and Degassing Fluxes

Authors: B. P. Kulikov, V. N. Baranov, E. G. Partyko, I. V. Kostin, P. O. Yur’ev, V. V. Yanov

Published in: Metallurgist | Issue 3-4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article presents the comparative results of laboratory and industrial studies carried out at Joint Stock Company “Russal Krasnoyarsk Aluminium Smelter” to study the composition and properties of cover-refining fluxes FPR-23 and Biomag. The results of the X-ray phase analysis of the studied fluxes were compared, and the particle size distribution of the fluxes on the vibration rotap was determined. The paper presents and describes the experimental scheme and determines the temperature range of melting fluxes. It is shown that, according to the results of industrial tests conducted using the method of a full factor experiment with 2 control factors (temperature and flux consumption), the FPR-23 flux reduces the amount of aluminum in the dross with an increase in temperature and an increase in the specific flux consumption. In addition, the amount of aluminum in the slag when using Biomag flux is practically independent of the melt temperature, although decreasing with increasing flux concentration. The flux FPR-23 has a negligible effect on the Na impurity content in aluminum and reduces the Na content by 0.00004% when the temperature rises to 750°C and the specific flux consumption is up to 1.5 kg/t. At the same time, the use of Biomag flux does not contribute to the reduction of Na in the metal melt. The content of the Ca impurity in the aluminum melt is not affected by the FPR-23 flux. The use of Biomag flux reduces the Ca content in an aluminum melt by an average of 0.000085%. The article shows that the use of FPR-23 flux does not reduce the concentration of hydrogen in an aluminum melt, while the use of Biomag flux reduces the concentration of hydrogen in an aluminum melt by an average of 0.02 cm3/100 g Al.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Q. Wang, H. Zhao, Zh. Li, L. Shen, and J. Zhao, “Production of Al–B master alloys by mixing KBF4 salt into molten aluminum,” Trans. Nonferrous Met. Soc. China, 23, 294–300 (2013).CrossRef Q. Wang, H. Zhao, Zh. Li, L. Shen, and J. Zhao, “Production of Al–B master alloys by mixing KBF4 salt into molten aluminum,” Trans. Nonferrous Met. Soc. China, 23, 294–300 (2013).CrossRef
2.
go back to reference O. Yu. Tkacheva, A. A. Kataev, A. A. Redkin, A. V. Rudenko, A. E. Dedyukhin, and Yu. P. Zaikov, “Fluxes for production of aluminum-boron alloys” [in Russian], Rasplavy, No. 5, 387–396 (2016). O. Yu. Tkacheva, A. A. Kataev, A. A. Redkin, A. V. Rudenko, A. E. Dedyukhin, and Yu. P. Zaikov, “Fluxes for production of aluminum-boron alloys” [in Russian], Rasplavy, No. 5, 387–396 (2016).
3.
go back to reference N. V. Sletova, V. A. Chaykin, S. P. Zadrutsii, and V. A. Rozum, “Development of new safe flux for aluminum and its alloys”, Lit’e i Metallurgiya, No. 3, 179–180 (2011). N. V. Sletova, V. A. Chaykin, S. P. Zadrutsii, and V. A. Rozum, “Development of new safe flux for aluminum and its alloys”, Lit’e i Metallurgiya, No. 3, 179–180 (2011).
4.
go back to reference V. I. Napalkov, V. N. Baranov, V. F. Frolov, et al., Melting and Casting of Aluminum Alloys: Monograph [in Russian], Sib. Feder. University, Krasnoyarsk (2020). V. I. Napalkov, V. N. Baranov, V. F. Frolov, et al., Melting and Casting of Aluminum Alloys: Monograph [in Russian], Sib. Feder. University, Krasnoyarsk (2020).
5.
go back to reference K. V. Nikitin, V. I. Nikitin, V. A. Chernov, and D. S. Krivopalov, “Technologies for processing aluminum melts with covering and degassing fluxes”, Liteishchik Rossii, No. 10, 38–42 (2013). K. V. Nikitin, V. I. Nikitin, V. A. Chernov, and D. S. Krivopalov, “Technologies for processing aluminum melts with covering and degassing fluxes”, Liteishchik Rossii, No. 10, 38–42 (2013).
6.
go back to reference N. Dj. Turakhodjaev, T. Kh. Tursunov, L. E. Yakubov, Kh. Z. Abdurakhmanov, and Sh. N. Turakhodjaeva, “Development of flux structure for processing of aluminum casting production wastes,” Arch. Foundry Eng., 15, Special Is. 3, 91–94 (2015). N. Dj. Turakhodjaev, T. Kh. Tursunov, L. E. Yakubov, Kh. Z. Abdurakhmanov, and Sh. N. Turakhodjaeva, “Development of flux structure for processing of aluminum casting production wastes,” Arch. Foundry Eng., 15, Special Is. 3, 91–94 (2015).
7.
go back to reference O. Majidi, S. G. Shabestari, and M. R. Aboutalebi, “Study of fluxing temperature in molten aluminum refining process,” J. оf Mater. Proc. Technology, 182, 450–455 (2007).CrossRef O. Majidi, S. G. Shabestari, and M. R. Aboutalebi, “Study of fluxing temperature in molten aluminum refining process,” J. оf Mater. Proc. Technology, 182, 450–455 (2007).CrossRef
8.
go back to reference S. V. Belyaev, V. N. Baranov, I. Y. Gubanov, E. G. Partyko, V. B. Deev, and E. S. Prusov, “Influence of flux composition on hydrogen content in aluminum melts,” ARPN J. Eng. Appl. Sci., 14, No. 8, 1570–1573 (2019). S. V. Belyaev, V. N. Baranov, I. Y. Gubanov, E. G. Partyko, V. B. Deev, and E. S. Prusov, “Influence of flux composition on hydrogen content in aluminum melts,” ARPN J. Eng. Appl. Sci., 14, No. 8, 1570–1573 (2019).
9.
go back to reference V. N. Baranov, V. B. Days, E. G. Partyko, S. V. Belyayev, P. O. Yurev, and E. S. Prusov, “Influence of atomic and molecular hydrogen in a silumine melts on their mechanical properties”, Metallurg, No. 5, 81–86 (2019). V. N. Baranov, V. B. Days, E. G. Partyko, S. V. Belyayev, P. O. Yurev, and E. S. Prusov, “Influence of atomic and molecular hydrogen in a silumine melts on their mechanical properties”, Metallurg, No. 5, 81–86 (2019).
10.
go back to reference B. P. Kulikov, V. N. Baranov, E. G. Partyko, P. O. Yuriev, and V. V. Yanov, “Improving the methodology for sampling liquid metal to analyse hydrogen content”, Metallurg, No. 12. 56–58 (2020). B. P. Kulikov, V. N. Baranov, E. G. Partyko, P. O. Yuriev, and V. V. Yanov, “Improving the methodology for sampling liquid metal to analyse hydrogen content”, Metallurg, No. 12. 56–58 (2020).
11.
go back to reference S. Kumar and T. Namboodhiri, “Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020,” Bull. Mater. Sci., 34(2), 311–321 (2011).CrossRef S. Kumar and T. Namboodhiri, “Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020,” Bull. Mater. Sci., 34(2), 311–321 (2011).CrossRef
12.
go back to reference V. B. Deev, E. S. Prusov, and A. I. Kutsenko, “Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods,” Metall. Ital., 2, 16–24 (2018). V. B. Deev, E. S. Prusov, and A. I. Kutsenko, “Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods,” Metall. Ital., 2, 16–24 (2018).
13.
go back to reference J. Zeng, D. Li, H. He, et al., “Relationship between aluminum oxide inclusion and porosity in aluminum melt,” Proc. of the 8th Pacific Rim Int. Congr. on Advanced Mater. and Processing, Springer, 1157–1162 (2013); J. Zeng, D. Li, H. He, et al., “Relationship between aluminum oxide inclusion and porosity in aluminum melt,” Proc. of the 8th Pacific Rim Int. Congr. on Advanced Mater. and Processing, Springer, 1157–1162 (2013);
Metadata
Title
Comparative Studies into Composition and Properties of FPR-23 and Biomag Covering and Degassing Fluxes
Authors
B. P. Kulikov
V. N. Baranov
E. G. Partyko
I. V. Kostin
P. O. Yur’ev
V. V. Yanov
Publication date
08-08-2022
Publisher
Springer US
Published in
Metallurgist / Issue 3-4/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01328-9

Other articles of this Issue 3-4/2022

Metallurgist 3-4/2022 Go to the issue

Premium Partners