Skip to main content
Top
Published in: Tribology Letters 4/2020

01-12-2020 | Original Paper

Comparative Study of Dimensionality and Symmetry Breaking on Nanoscale Friction in the Prandtl–Tomlinson Model with Varying Effective Stiffness

Authors: Simona Skuratovsky, Liron Agmon, Ronen Berkovich

Published in: Tribology Letters | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Friction Force Microscopy (FFM) measurements on NaCl immersed in ethanol display an increase of the effective contact stiffness with the applied load. This stiffness is estimated from the measured local contact interaction of the tip with the NaCl surface and the Prandtl–Tomlinson (PT) parameter, which reflects the relation between the corrugation stiffness and the effective contact stiffness. Different from FFM measurements in ultrahigh vacuum, for measurements in ethanol surroundings the PT parameters showed a maximum with the applied load. We incorporated this measured load-dependent effective stiffness together with the load-dependent amplitude of the corrugation energy into simulations based on the PT model, and studied its effect on the lateral friction for symmetric 1D and 2D potentials, as well as for an asymmetric 1D potentials. The simulations reproduced the experimentally observed non-monotonous behavior of the PT parameter, and enabled a glimpse on the relation of the characteristic observables (mean maximal slip forces and stiffness) with respect to their governing parameters (corrugation energy, effective stiffness). In all, apart from large deviations from symmetry in the interaction potential, the PT parameter provides a reliable estimate for nanoscale friction over periodic surfaces.

Graphic Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987) Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)
2.
go back to reference Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995) Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)
3.
go back to reference Carpick, R.W., Salmeron, M.: Scratching the Surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997) Carpick, R.W., Salmeron, M.: Scratching the Surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)
4.
go back to reference Carpick, R.W., Ogletree, D.F., Salmeron, M.: A general equation for fitting contact area and friction vs load measurements. J. Colloid Interface Sci. 211, 395–400 (1999) Carpick, R.W., Ogletree, D.F., Salmeron, M.: A general equation for fitting contact area and friction vs load measurements. J. Colloid Interface Sci. 211, 395–400 (1999)
5.
go back to reference Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009) Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)
6.
go back to reference Müser, M.H.: Velocity dependence of kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 84, 125419 (2011) Müser, M.H.: Velocity dependence of kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 84, 125419 (2011)
7.
go back to reference Dietzel, D., Feldmann, M., Schwarz, U.D., Fuchs, H., Schirmeisen, A.: Scaling laws of structural lubricity. Phys. Rev. Lett 111, 235502 (2013) Dietzel, D., Feldmann, M., Schwarz, U.D., Fuchs, H., Schirmeisen, A.: Scaling laws of structural lubricity. Phys. Rev. Lett 111, 235502 (2013)
8.
go back to reference Cihan, E., İpek, S., Durgun, E., Baykara, M.Z.: Structural lubricity under ambient conditions. Nat. Commun. 7, 12055 (2016) Cihan, E., İpek, S., Durgun, E., Baykara, M.Z.: Structural lubricity under ambient conditions. Nat. Commun. 7, 12055 (2016)
9.
go back to reference Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. 31, 030801 (2013) Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. 31, 030801 (2013)
10.
go back to reference Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., et al.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000) Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., et al.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)
11.
go back to reference Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001) Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)
12.
go back to reference Dudko, O.K., Filippov, A.E., Klafter, J., Urbakh, M.: Dynamic force spectroscopy: a Fokker-Planck approach. Chem. Phys. Lett. 352, 499–504 (2002) Dudko, O.K., Filippov, A.E., Klafter, J., Urbakh, M.: Dynamic force spectroscopy: a Fokker-Planck approach. Chem. Phys. Lett. 352, 499–504 (2002)
13.
go back to reference Fusco, C., Fasolino, A.: Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional tomlinson model. Phys. Rev. B 71, 045413 (2005) Fusco, C., Fasolino, A.: Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional tomlinson model. Phys. Rev. B 71, 045413 (2005)
14.
go back to reference Evstigneev, M., Schirmeisen, A., Jansen, L., Fuchs, H., Reimann, P.: Force Dependence of Transition Rates in Atomic Friction. Phys. Rev. Lett. 97, 240601 (2006) Evstigneev, M., Schirmeisen, A., Jansen, L., Fuchs, H., Reimann, P.: Force Dependence of Transition Rates in Atomic Friction. Phys. Rev. Lett. 97, 240601 (2006)
15.
go back to reference Apostoli, C., Giusti, G., Ciccoianni, J., Riva, G., Capozza, R., Woulache, R.L., et al.: Velocity dependence of sliding friction on a crystalline surface. Beilstein J. Nanotechnol. 8, 2186–2199 (2017) Apostoli, C., Giusti, G., Ciccoianni, J., Riva, G., Capozza, R., Woulache, R.L., et al.: Velocity dependence of sliding friction on a crystalline surface. Beilstein J. Nanotechnol. 8, 2186–2199 (2017)
16.
go back to reference Iglesias, M.L., Gonçalves, S.: Sliding and dry friction: prandtl-tomlinson athermal model revisited. Braz. J. Phys. 48, 585–591 (2018) Iglesias, M.L., Gonçalves, S.: Sliding and dry friction: prandtl-tomlinson athermal model revisited. Braz. J. Phys. 48, 585–591 (2018)
17.
go back to reference Szoszkiewicz, R., Riedo, E.: Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 87, 033105 (2005) Szoszkiewicz, R., Riedo, E.: Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 87, 033105 (2005)
18.
go back to reference Schirmeisen, A., Jansen, L., Hölscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006) Schirmeisen, A., Jansen, L., Hölscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006)
19.
go back to reference Krylov, S.Y., Frenken, J.W.M.: The crucial role of temperature in atomic scale friction. J. Phys. Condens. Matter. 20, 354003 (2008) Krylov, S.Y., Frenken, J.W.M.: The crucial role of temperature in atomic scale friction. J. Phys. Condens. Matter. 20, 354003 (2008)
20.
go back to reference Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010) Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)
21.
go back to reference Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. Lett. 104, 256101 (2010) Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. Lett. 104, 256101 (2010)
22.
go back to reference Mazo, J.J., Dietzel, D., Schirmeisen, A., Vilhena, J.G., Gnecco, E.: Time strengthening of crystal nanocontacts. Phys. Rev. Lett. 118, 246101 (2017) Mazo, J.J., Dietzel, D., Schirmeisen, A., Vilhena, J.G., Gnecco, E.: Time strengthening of crystal nanocontacts. Phys. Rev. Lett. 118, 246101 (2017)
23.
go back to reference Ouyang, W., Cheng, Y., Ma, M., Urbakh, M.: Load-velocity-temperature relationship in frictional response of microscopic contacts. J Mech Phys Solids 137, 103880 (2020) Ouyang, W., Cheng, Y., Ma, M., Urbakh, M.: Load-velocity-temperature relationship in frictional response of microscopic contacts. J Mech Phys Solids 137, 103880 (2020)
24.
go back to reference Fujisawa, S., Kishi, E., Sugawara, Y., Morita, S.: Atomic-scale friction observed with a two-dimensional frictional-force microscope. Phys. Rev. B 51, 7849–7857 (1995a) Fujisawa, S., Kishi, E., Sugawara, Y., Morita, S.: Atomic-scale friction observed with a two-dimensional frictional-force microscope. Phys. Rev. B 51, 7849–7857 (1995a)
25.
go back to reference Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Modelling of the scan process in lateral force microscopy. Surf. Sci. 375, 395–402 (1997) Hölscher, H., Schwarz, U.D., Wiesendanger, R.: Modelling of the scan process in lateral force microscopy. Surf. Sci. 375, 395–402 (1997)
26.
go back to reference Fujisawa, S., Yokoyama, K., Sugawara, Y., Morita, S.: Analysis of experimental load dependence of two-dimensional atomic-scale friction. Phys. Rev. B 58, 4909–4916 (1998) Fujisawa, S., Yokoyama, K., Sugawara, Y., Morita, S.: Analysis of experimental load dependence of two-dimensional atomic-scale friction. Phys. Rev. B 58, 4909–4916 (1998)
27.
go back to reference Müser, M.H.: Structural lubricity: role of dimension and symmetry. Europhys. Lett. (EPL) 66, 97–103 (2004) Müser, M.H.: Structural lubricity: role of dimension and symmetry. Europhys. Lett. (EPL) 66, 97–103 (2004)
28.
go back to reference Gao, G., Cannara, R.J., Carpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces Using MD and AFM. Langmuir 23, 5394–5405 (2007) Gao, G., Cannara, R.J., Carpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces Using MD and AFM. Langmuir 23, 5394–5405 (2007)
29.
go back to reference Karino, W., Shindo, H.: Frictional force microscopic detection of anisotropy at NaCl (100), (110) and (111) surfaces. Tribol. Int. 40, 1568–1573 (2007) Karino, W., Shindo, H.: Frictional force microscopic detection of anisotropy at NaCl (100), (110) and (111) surfaces. Tribol. Int. 40, 1568–1573 (2007)
30.
go back to reference Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Maier, S., Glatzel, T., et al.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79, 045414 (2009) Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Maier, S., Glatzel, T., et al.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79, 045414 (2009)
31.
go back to reference Fajardo, O.Y., Gnecco, E., Mazo, J.J.: Anisotropy effects and friction maps in the framework of the 2d PT model. Physica B Condens. Matter. 455, 44–48 (2014) Fajardo, O.Y., Gnecco, E., Mazo, J.J.: Anisotropy effects and friction maps in the framework of the 2d PT model. Physica B Condens. Matter. 455, 44–48 (2014)
32.
go back to reference Takoutsing, C.S., Djuidjé Kenmoé, G., Kofané, T.C.: Effects of anisotropy and substrate shape on atomic friction force in two-dimensional model. Tribol. Lett. 65, 107 (2017) Takoutsing, C.S., Djuidjé Kenmoé, G., Kofané, T.C.: Effects of anisotropy and substrate shape on atomic friction force in two-dimensional model. Tribol. Lett. 65, 107 (2017)
33.
go back to reference Dagdeviren, O.E.: Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models. Nanotechnology 29, 315704 (2018) Dagdeviren, O.E.: Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models. Nanotechnology 29, 315704 (2018)
34.
go back to reference Fujisawa, S., Kishi, E., Sugawara, Y., Morita, S.: Load dependence of two-dimensional atomic-scale friction. Phys. Rev. B 52, 5302–5305 (1995b) Fujisawa, S., Kishi, E., Sugawara, Y., Morita, S.: Load dependence of two-dimensional atomic-scale friction. Phys. Rev. B 52, 5302–5305 (1995b)
35.
go back to reference Zaloj, V., Urbakh, M., Klafter, J.: Modifying friction by manipulating normal response to lateral motion. Phys. Rev. Lett. 82, 4823–4826 (1999) Zaloj, V., Urbakh, M., Klafter, J.: Modifying friction by manipulating normal response to lateral motion. Phys. Rev. Lett. 82, 4823–4826 (1999)
36.
go back to reference Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004) Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)
37.
go back to reference Fusco, C., Fasolino, A.: Power-law load dependence of atomic friction. Appl. Phys. Lett. 84, 699–701 (2004) Fusco, C., Fasolino, A.: Power-law load dependence of atomic friction. Appl. Phys. Lett. 84, 699–701 (2004)
38.
go back to reference Pawlak, R., Ouyang, W., Filippov, A.E., Kalikhman-Razvozov, L., Kawai, S., Glatzel, T., et al.: Single-molecule tribology: force microscopy manipulation of a porphyrin derivative on a copper surface. ACS Nano. 10, 713–722 (2016) Pawlak, R., Ouyang, W., Filippov, A.E., Kalikhman-Razvozov, L., Kawai, S., Glatzel, T., et al.: Single-molecule tribology: force microscopy manipulation of a porphyrin derivative on a copper surface. ACS Nano. 10, 713–722 (2016)
39.
go back to reference Ye, Z., Egberts, P., Han, G.H., Johnson, A.T.C., Carpick, R.W., Martini, A.: Load-dependent friction hysteresis on graphene. ACS Nano. 10, 5161–5168 (2016) Ye, Z., Egberts, P., Han, G.H., Johnson, A.T.C., Carpick, R.W., Martini, A.: Load-dependent friction hysteresis on graphene. ACS Nano. 10, 5161–5168 (2016)
40.
go back to reference Sharp, T.A., Pastewka, L., Lignères, V.L., Robbins, M.O.: Scale- and load-dependent friction in commensurate sphere-on-flat contacts. Phys. Rev. B 96, 155436 (2017) Sharp, T.A., Pastewka, L., Lignères, V.L., Robbins, M.O.: Scale- and load-dependent friction in commensurate sphere-on-flat contacts. Phys. Rev. B 96, 155436 (2017)
41.
go back to reference Agmon, L., Shahar, I., Birodker, B.-E., Skuratovsky, S., Jopp, J., Berkovich, R.: Application of static disorder approach to friction force microscopy of catalyst nanoparticles to estimate corrugation energy amplitudes. J. Phys. Chem. C 123, 3032–3038 (2019) Agmon, L., Shahar, I., Birodker, B.-E., Skuratovsky, S., Jopp, J., Berkovich, R.: Application of static disorder approach to friction force microscopy of catalyst nanoparticles to estimate corrugation energy amplitudes. J. Phys. Chem. C 123, 3032–3038 (2019)
42.
go back to reference Fessler, G., Sadeghi, A., Glatzel, T., Goedecker, S., Meyer, E.: Atomic friction: anisotropy and asymmetry effects. Tribol. Lett. 67, 59 (2019) Fessler, G., Sadeghi, A., Glatzel, T., Goedecker, S., Meyer, E.: Atomic friction: anisotropy and asymmetry effects. Tribol. Lett. 67, 59 (2019)
43.
go back to reference Cao, X.A., Gan, X., Lang, H., Yu, K., Ding, S., Peng, Y., et al.: Anisotropic nanofriction on MoS2 with different thicknesses. Tribol. Int. 134, 308–316 (2019) Cao, X.A., Gan, X., Lang, H., Yu, K., Ding, S., Peng, Y., et al.: Anisotropic nanofriction on MoS2 with different thicknesses. Tribol. Int. 134, 308–316 (2019)
44.
go back to reference Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85–106 (1928) Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85–106 (1928)
45.
go back to reference Tomlinson, G.A.C.V.I.: A molecular theory of friction. Lond. Edinb. Dubl. Phil. Mag. 7, 905–939 (1929) Tomlinson, G.A.C.V.I.: A molecular theory of friction. Lond. Edinb. Dubl. Phil. Mag. 7, 905–939 (1929)
46.
go back to reference Popov, V.L., Gray, J.A.T.: Prandtl-Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. Z. Angew. Math. Mech. 92, 683–708 (2012) Popov, V.L., Gray, J.A.T.: Prandtl-Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. Z. Angew. Math. Mech. 92, 683–708 (2012)
47.
go back to reference Hölscher, H., Raberg, W., Schwarz, U.D., Hasbach, A., Wandelt, K., Wiesendanger, R.: Imaging of sub-unit-cell structures in the contact mode of the scanning force microscope. Phys. Rev. B 59, 1661–1664 (1999) Hölscher, H., Raberg, W., Schwarz, U.D., Hasbach, A., Wandelt, K., Wiesendanger, R.: Imaging of sub-unit-cell structures in the contact mode of the scanning force microscope. Phys. Rev. B 59, 1661–1664 (1999)
48.
go back to reference Schirmeisen, A., Jansen, L., Fuchs, H.: Tip-jump statistics of stick-slip friction. Phys. Rev. B 71, 245403 (2005) Schirmeisen, A., Jansen, L., Fuchs, H.: Tip-jump statistics of stick-slip friction. Phys. Rev. B 71, 245403 (2005)
49.
go back to reference Hölscher, H., Ebeling, D., Schwarz, U.D.: Friction at Atomic-Scale Surface Steps: Experiment and Theory. Phys Rev Lett 101, 246105 (2008) Hölscher, H., Ebeling, D., Schwarz, U.D.: Friction at Atomic-Scale Surface Steps: Experiment and Theory. Phys Rev Lett 101, 246105 (2008)
50.
go back to reference Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., Tosatti, E.: Colloquium: modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013) Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., Tosatti, E.: Colloquium: modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013)
51.
go back to reference Krylov, S.Y., Frenken, J.W.M.: The problem of critical damping in nanofriction. Colloid J. 74, 569–572 (2012) Krylov, S.Y., Frenken, J.W.M.: The problem of critical damping in nanofriction. Colloid J. 74, 569–572 (2012)
52.
go back to reference Krylov, S.Y., van Baarle, D.W., Beck, M.E.S., Frenken, J.W.M.: Why do we “feel” atoms in nano-scale friction? Colloid J. 79, 81–86 (2017) Krylov, S.Y., van Baarle, D.W., Beck, M.E.S., Frenken, J.W.M.: Why do we “feel” atoms in nano-scale friction? Colloid J. 79, 81–86 (2017)
53.
go back to reference Schwarz, U.D., Hölscher, H.: Exploring and explaining friction with the Prandtl-Tomlinson model. ACS Nano. 10, 38–41 (2016) Schwarz, U.D., Hölscher, H.: Exploring and explaining friction with the Prandtl-Tomlinson model. ACS Nano. 10, 38–41 (2016)
54.
go back to reference Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J Phys Condens Matter 13, R619–R642 (2001) Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J Phys Condens Matter 13, R619–R642 (2001)
55.
go back to reference Bennewitz, R., Gnecco, E., Gyalog, T., Meyer, E.: Atomic friction studies on well-defined surfaces. Tribol. Lett. 10, 51–56 (2001) Bennewitz, R., Gnecco, E., Gyalog, T., Meyer, E.: Atomic friction studies on well-defined surfaces. Tribol. Lett. 10, 51–56 (2001)
56.
go back to reference Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol. Lett. 39, 63–69 (2010) Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol. Lett. 39, 63–69 (2010)
57.
go back to reference Agmon, L., Shahar, I., Yosufov, D., Pimentel, C., Pina, C.M., Gnecco, E., et al.: Estimation of interaction energy and contact stiffness in atomic-scale sliding on a model sodium chloride surface in ethanol. Sci. Rep. 8, 4681 (2018) Agmon, L., Shahar, I., Yosufov, D., Pimentel, C., Pina, C.M., Gnecco, E., et al.: Estimation of interaction energy and contact stiffness in atomic-scale sliding on a model sodium chloride surface in ethanol. Sci. Rep. 8, 4681 (2018)
58.
go back to reference Vilhena, J.G., Pimentel, C., Pedraz, P., Luo, F., Serena, P.A., Pina, C.M., et al.: Atomic-scale sliding friction on graphene in water. ACS Nano. 10, 4288–4293 (2016) Vilhena, J.G., Pimentel, C., Pedraz, P., Luo, F., Serena, P.A., Pina, C.M., et al.: Atomic-scale sliding friction on graphene in water. ACS Nano. 10, 4288–4293 (2016)
59.
go back to reference Verdaguer, A., Sacha, G.M., Luna, M., Ogletree, D.F., Salmeron, M.: Initial stages of water adsorption on NaCl (100) studied by scanning polarization force microscopy. J. Chem. Phys. 123, 124703 (2005) Verdaguer, A., Sacha, G.M., Luna, M., Ogletree, D.F., Salmeron, M.: Initial stages of water adsorption on NaCl (100) studied by scanning polarization force microscopy. J. Chem. Phys. 123, 124703 (2005)
60.
go back to reference Shimizu, T.K., Maier, S., Verdaguer, A., Velasco-Velez, J.-J., Salmeron, M.: Water at surfaces and interfaces: from molecules to ice and bulk liquid. Prog. Surf. Sci. 93, 87–107 (2018) Shimizu, T.K., Maier, S., Verdaguer, A., Velasco-Velez, J.-J., Salmeron, M.: Water at surfaces and interfaces: from molecules to ice and bulk liquid. Prog. Surf. Sci. 93, 87–107 (2018)
61.
go back to reference Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996) Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)
62.
go back to reference Varenberg, M., Etsion, I., Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74, 3362–3367 (2003) Varenberg, M., Etsion, I., Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74, 3362–3367 (2003)
63.
go back to reference Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70, 1548–1550 (1997) Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70, 1548–1550 (1997)
64.
go back to reference Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990) Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)
65.
go back to reference Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003) Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)
66.
go back to reference Garg, A.: Escape-field distribution for escape from a metastable potential well subject to a steadily increasing bias field. Phys. Rev. B 51, 15592–15595 (1995) Garg, A.: Escape-field distribution for escape from a metastable potential well subject to a steadily increasing bias field. Phys. Rev. B 51, 15592–15595 (1995)
67.
go back to reference Pesz, K., Gabryś, B.J., Bartkiewicz, S.J.: Analytical solution for the Feynman ratchet. Phys. Rev. E 66, 061103 (2002) Pesz, K., Gabryś, B.J., Bartkiewicz, S.J.: Analytical solution for the Feynman ratchet. Phys. Rev. E 66, 061103 (2002)
68.
go back to reference Berkovich, R., Klafter, J., Urbakh, M.: Analyzing friction forces with the Jarzynski equality. J. Phys. Condens. Matter. 20, 354008 (2008) Berkovich, R., Klafter, J., Urbakh, M.: Analyzing friction forces with the Jarzynski equality. J. Phys. Condens. Matter. 20, 354008 (2008)
69.
go back to reference Gnecco, E., Roth, R., Baratoff, A.: Analytical expressions for the kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 86, 035443 (2012) Gnecco, E., Roth, R., Baratoff, A.: Analytical expressions for the kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 86, 035443 (2012)
70.
go back to reference Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006) Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)
71.
go back to reference Gyalog, T., Bammerlin, M., Lüthi, R., Meyer, E., Thomas, H.: Mechanism of atomic friction. EPL 31, 269–274 (1995) Gyalog, T., Bammerlin, M., Lüthi, R., Meyer, E., Thomas, H.: Mechanism of atomic friction. EPL 31, 269–274 (1995)
72.
go back to reference Lim, Y., Park, H., Caron, A.: Investigation on the role of interfacial water on the tribology between graphite and metals. RSC Adv. 9, 7285–7291 (2019) Lim, Y., Park, H., Caron, A.: Investigation on the role of interfacial water on the tribology between graphite and metals. RSC Adv. 9, 7285–7291 (2019)
73.
go back to reference Cammarata, A., Nicolini, P., Simonovic, K., Ukraintsev, E., Polcar, T.: Atomic-scale design of friction and energy dissipation. Phys. Rev. B 99, 094309 (2019) Cammarata, A., Nicolini, P., Simonovic, K., Ukraintsev, E., Polcar, T.: Atomic-scale design of friction and energy dissipation. Phys. Rev. B 99, 094309 (2019)
74.
go back to reference van Baarle, D.W., Krylov, S.Y., Beck, M.E.S., Frenken, J.W.M.: On the non-trivial origin of atomic-scale patterns in friction force microscopy. Tribol. Lett. 67, 15 (2018) van Baarle, D.W., Krylov, S.Y., Beck, M.E.S., Frenken, J.W.M.: On the non-trivial origin of atomic-scale patterns in friction force microscopy. Tribol. Lett. 67, 15 (2018)
Metadata
Title
Comparative Study of Dimensionality and Symmetry Breaking on Nanoscale Friction in the Prandtl–Tomlinson Model with Varying Effective Stiffness
Authors
Simona Skuratovsky
Liron Agmon
Ronen Berkovich
Publication date
01-12-2020
Publisher
Springer US
Published in
Tribology Letters / Issue 4/2020
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-020-01355-0

Other articles of this Issue 4/2020

Tribology Letters 4/2020 Go to the issue

Premium Partners