Skip to main content
Top
Published in: Journal of Materials Science 22/2016

01-08-2016 | Original Paper

Comparative study of fluorite-type ceria-based Ce1−x Ln x O2−δ (Ln = Tb, Gd, and Pr) mixed ionic electronic conductors densified at low temperatures

Authors: Devaraj Ramasamy, Aliaksandr L. Shaula, Narendar Nasani, Andrei V. Kovalevsky, Duncan P. Fagg

Published in: Journal of Materials Science | Issue 22/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It has been reported that peak mixed conducting performance can only be obtained in doped ceria-based fluorite ceramics that contain cobalt sintering additives, when these materials are sintered below 1100 °C. Hence, this article provides a comparative analysis of the electrochemical behavior of such materials formed under the aforementioned conditions. The transport properties of Ce0.8Tb0.2O2−δ (CTO), Ce0.8Gd0.2O2−δ (CGO), and Ce0.8Pr0.2O2−δ (CPO) with 2 mol% Co sintering aid were analyzed for samples prepared and sintered under similar conditions. The total conductivities of these samples were characterized by impedance spectroscopy under air atmosphere in the temperature range of 200–850 °C. Oxide-ion transference numbers were determined by the modified electromotive force method under oxygen/air gradient. Ionic and electronic conductivities were calculated from transference numbers and total conductivity measurements and compared. CTO + Co and CPO + Co ceramic materials show higher relative contribution of the electronic transport compared to CGO + Co. Among these materials, CPO + Co shows the highest total and partial electronic conductivities, as well as the highest oxygen permeability, with essentially the same partial oxide-ion conduction as CGO + Co.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang TS, Ma J, Leng YJ, Chan SH, Hing P, Kilner JA (2004) Effect of transition metal oxides on densification and electrical properties of Si-containing Ce0.8Gd0.2O2−δ ceramics. Solid State Ionics 168:187–195CrossRef Zhang TS, Ma J, Leng YJ, Chan SH, Hing P, Kilner JA (2004) Effect of transition metal oxides on densification and electrical properties of Si-containing Ce0.8Gd0.2O2−δ ceramics. Solid State Ionics 168:187–195CrossRef
2.
go back to reference Martínez-Arias A, Hungría AB, Fernández-García M, Iglesias-Juez A, Conesa JC, Mather GC, Munuera G (2005) Cerium-terbium mixed oxides as potential materials for anodes in solid oxide fuel cells. J Power Sour 151:43–51CrossRef Martínez-Arias A, Hungría AB, Fernández-García M, Iglesias-Juez A, Conesa JC, Mather GC, Munuera G (2005) Cerium-terbium mixed oxides as potential materials for anodes in solid oxide fuel cells. J Power Sour 151:43–51CrossRef
3.
go back to reference Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B 95:73–77CrossRef Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B 95:73–77CrossRef
4.
go back to reference Chatzichristodoulou C, Hendriksen PV (2012) Electronic and ionic transport in Ce0.8Pr x Tb0.2−x O2−δ and evaluation of performance as oxygen permeation membranes. ECS Trans 45:45–62CrossRef Chatzichristodoulou C, Hendriksen PV (2012) Electronic and ionic transport in Ce0.8Pr x Tb0.2−x O2−δ and evaluation of performance as oxygen permeation membranes. ECS Trans 45:45–62CrossRef
5.
go back to reference Morimoto T, Tomonaga H, Mitani A (1999) Ultraviolet ray absorbing coatings on glass for automobiles. Thin Solid Films 351:61–65CrossRef Morimoto T, Tomonaga H, Mitani A (1999) Ultraviolet ray absorbing coatings on glass for automobiles. Thin Solid Films 351:61–65CrossRef
6.
go back to reference Shin MJ, Yu JH (2012) Oxygen transport of A-site deficient Sr1−x Fe0.5Co0.5O3−δ (x = 0−0.3) membranes. J Membr Sci 401:40–47CrossRef Shin MJ, Yu JH (2012) Oxygen transport of A-site deficient Sr1−x Fe0.5Co0.5O3−δ (x = 0−0.3) membranes. J Membr Sci 401:40–47CrossRef
7.
go back to reference Kim JJ, Kuhn M, Bishop SR, Tuller HL (2013) Cathodic and defect properties of BaxSr1−x Ti1−y FeyO3−y/2+δ mixed conducting oxides. Solid State Ionics 230:2–6CrossRef Kim JJ, Kuhn M, Bishop SR, Tuller HL (2013) Cathodic and defect properties of BaxSr1−x Ti1−y FeyO3−y/2+δ mixed conducting oxides. Solid State Ionics 230:2–6CrossRef
8.
go back to reference Fagg D, Feighery A, Irvine JT (2003) The systems Zr(Nb, Ti)(R)O2−δ , R = Yb, Ca—optimization of mixed conductivity and comparison with results of other systems (R = Y and Gd). J Solid State Chem 172:277–287CrossRef Fagg D, Feighery A, Irvine JT (2003) The systems Zr(Nb, Ti)(R)O2−δ , R = Yb, Ca—optimization of mixed conductivity and comparison with results of other systems (R = Y and Gd). J Solid State Chem 172:277–287CrossRef
9.
go back to reference Tao S, Irvine JTS (2002) Optimization of mixed conducting properties of Y2O3–ZrO2–TiO2 and Sc2O3–Y2O3–ZrO2–TiO2 solid solutions as potential SOFC anode materials. J Solid State Chem 165:12–18CrossRef Tao S, Irvine JTS (2002) Optimization of mixed conducting properties of Y2O3–ZrO2–TiO2 and Sc2O3–Y2O3–ZrO2–TiO2 solid solutions as potential SOFC anode materials. J Solid State Chem 165:12–18CrossRef
10.
go back to reference Balaguer M, Solís C, Serra JM (2012) Structural–transport properties relationships on Ce1−x Ln x O2−δ system (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and effect of cobalt addition. J Phys Chem C 116:7975–7982CrossRef Balaguer M, Solís C, Serra JM (2012) Structural–transport properties relationships on Ce1−x Ln x O2−δ system (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and effect of cobalt addition. J Phys Chem C 116:7975–7982CrossRef
11.
go back to reference Fagg DP, García-Martin S, Kharton VV, Frade JR (2009) Transport properties of fluorite-type Ce0.8Pr0.2O2−δ : optimization via the use of cobalt oxide sintering aid. Chem Mater 231:381–391CrossRef Fagg DP, García-Martin S, Kharton VV, Frade JR (2009) Transport properties of fluorite-type Ce0.8Pr0.2O2−δ : optimization via the use of cobalt oxide sintering aid. Chem Mater 231:381–391CrossRef
12.
go back to reference Blumenthal RN, Panlener RJ (1970) Electron mobility in nonstoichiometric cerium dioxide at high temperatures. J Phys Chem Solids 31:1190–1192CrossRef Blumenthal RN, Panlener RJ (1970) Electron mobility in nonstoichiometric cerium dioxide at high temperatures. J Phys Chem Solids 31:1190–1192CrossRef
13.
go back to reference Tuller HL, Nowick AS (1977) Small polaron electron transport in reduced CeO2 single crystals. J Phys Chem Solids 38:859–867CrossRef Tuller HL, Nowick AS (1977) Small polaron electron transport in reduced CeO2 single crystals. J Phys Chem Solids 38:859–867CrossRef
14.
go back to reference Naik IK, Tien TY (1978) Small-polaron mobility in nonstoichiometric cerium dioxide. J Phys Chem Solids 39:311–315CrossRef Naik IK, Tien TY (1978) Small-polaron mobility in nonstoichiometric cerium dioxide. J Phys Chem Solids 39:311–315CrossRef
15.
go back to reference Fagg D, Abrantes JC, Pérez-Coll D, Núñez P, Kharton V, Frade J (2003) The effect of cobalt oxide sintering aid on electronic transport in Ce0.80Gd0.20O2−δ electrolyte. Electrochim Acta 48:1023–1029CrossRef Fagg D, Abrantes JC, Pérez-Coll D, Núñez P, Kharton V, Frade J (2003) The effect of cobalt oxide sintering aid on electronic transport in Ce0.80Gd0.20O2−δ electrolyte. Electrochim Acta 48:1023–1029CrossRef
16.
go back to reference Fagg DP, Kharton VV, Frade JR (2003) p-Type electronic transport in Ce0.8Gd0.2O2−δ : the effect of transition metal oxide sintering aids. J Electroceram 9:199–207CrossRef Fagg DP, Kharton VV, Frade JR (2003) p-Type electronic transport in Ce0.8Gd0.2O2−δ : the effect of transition metal oxide sintering aids. J Electroceram 9:199–207CrossRef
17.
go back to reference Ramasamy D, Shaula AL, Gómez-Herrero A, Kharton VV, Fagg DP (2015) Oxygen permeability of mixed-conducting Ce0.8Tb0.2O2−δ membranes: effects of ceramic microstructure and sintering temperature. J Membr Sci 475:414–424CrossRef Ramasamy D, Shaula AL, Gómez-Herrero A, Kharton VV, Fagg DP (2015) Oxygen permeability of mixed-conducting Ce0.8Tb0.2O2−δ membranes: effects of ceramic microstructure and sintering temperature. J Membr Sci 475:414–424CrossRef
19.
go back to reference Balaguer M, Solís C, Serra M (2011) Study of the transport properties of the mixed ionic electronic conductor Ce1−x Tb x O2−δ + Co (x = 0.1, 0.2) and evaluation as oxygen-transport membrane. Chem Mater 23:2333–2343CrossRef Balaguer M, Solís C, Serra M (2011) Study of the transport properties of the mixed ionic electronic conductor Ce1−x Tb x O2−δ  + Co (x = 0.1, 0.2) and evaluation as oxygen-transport membrane. Chem Mater 23:2333–2343CrossRef
20.
go back to reference Pérez-Coll D, Núñez P, Abrantes J, Fagg D, Kharton V, Frade J (2005) Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO. Solid State Ionics 176:2799–2805CrossRef Pérez-Coll D, Núñez P, Abrantes J, Fagg D, Kharton V, Frade J (2005) Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO. Solid State Ionics 176:2799–2805CrossRef
21.
go back to reference Fagg DP, Kharton VV, Frade JR (2004) Transport in ceria electrolytes modified with sintering aids: effects on oxygen reduction kinetics. J Solid State Electrochem 8:618–625CrossRef Fagg DP, Kharton VV, Frade JR (2004) Transport in ceria electrolytes modified with sintering aids: effects on oxygen reduction kinetics. J Solid State Electrochem 8:618–625CrossRef
22.
go back to reference Baral AK, Dasari HB, Kim B, Lee J (2013) Effect of sintering aid (CoO) on transport properties of nanocrystalline Gd doped ceria (GDC) materials prepared by co-precipitation method. J Alloys Compd 575:455–460CrossRef Baral AK, Dasari HB, Kim B, Lee J (2013) Effect of sintering aid (CoO) on transport properties of nanocrystalline Gd doped ceria (GDC) materials prepared by co-precipitation method. J Alloys Compd 575:455–460CrossRef
23.
go back to reference Balaguer M, Solís C, Roitsch S, Serra JM (2014) Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ + Co 2 mol%. Dalton Trans 4:4305–4312CrossRef Balaguer M, Solís C, Roitsch S, Serra JM (2014) Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ  + Co 2 mol%. Dalton Trans 4:4305–4312CrossRef
24.
go back to reference Gorelov VP (1988) Transference number determination in ionic conductors by the e.m.f. method with active load. Elektrokhimiya 24:1380–1381 Gorelov VP (1988) Transference number determination in ionic conductors by the e.m.f. method with active load. Elektrokhimiya 24:1380–1381
25.
go back to reference Kharton VV, Marques FMB (2001) Interfacial effects in electrochemical cells for oxygen ionic conduction measurements. I. The e.m.f. method. Solid State Ionics 140:381–394CrossRef Kharton VV, Marques FMB (2001) Interfacial effects in electrochemical cells for oxygen ionic conduction measurements. I. The e.m.f. method. Solid State Ionics 140:381–394CrossRef
26.
go back to reference Tikhonovich VV, Shuangbao L, Naumovich EN, Kovaievsky AV, Viskup AP, Bashmakov IA, Yaremchenko AA (1998) Ceramic microstructure and oxygen permeability of SrCo(Fe, M)O3−δ (M = Cu or Cr) perovskite membranes. J Electrochem Soc 145:1363–1373CrossRef Tikhonovich VV, Shuangbao L, Naumovich EN, Kovaievsky AV, Viskup AP, Bashmakov IA, Yaremchenko AA (1998) Ceramic microstructure and oxygen permeability of SrCo(Fe, M)O3−δ (M = Cu or Cr) perovskite membranes. J Electrochem Soc 145:1363–1373CrossRef
27.
go back to reference Coduri M, Scavini M, Brunelli M, Pedrazzin E, Masala P (2014) Structural characterization of Tb- and Pr-doped ceria. Solid State Ionics 268:150–155CrossRef Coduri M, Scavini M, Brunelli M, Pedrazzin E, Masala P (2014) Structural characterization of Tb- and Pr-doped ceria. Solid State Ionics 268:150–155CrossRef
28.
go back to reference Fagg D, Kharton V, Shaula A, Marozau I, Frade J (2005) Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr, Zr)O2−δ. Solid State Ionics 176:1723–1730CrossRef Fagg D, Kharton V, Shaula A, Marozau I, Frade J (2005) Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr, Zr)O2−δ. Solid State Ionics 176:1723–1730CrossRef
29.
go back to reference Fagg DP, Marozau IP, Shaula AL, Kharton VV, Frade JR (2006) Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8−x Pr0.2O2−δ , x = 0, 0.15, 0.2. J Solid State Chem 179:3347–3356CrossRef Fagg DP, Marozau IP, Shaula AL, Kharton VV, Frade JR (2006) Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8−x Pr0.2O2−δ , x = 0, 0.15, 0.2. J Solid State Chem 179:3347–3356CrossRef
30.
go back to reference Kosacki I, Anderson HU (2000) Microstructure–property relationships in nanocrystalline oxide thin films. Ionics 6:294–311CrossRef Kosacki I, Anderson HU (2000) Microstructure–property relationships in nanocrystalline oxide thin films. Ionics 6:294–311CrossRef
Metadata
Title
Comparative study of fluorite-type ceria-based Ce1−x Ln x O2−δ (Ln = Tb, Gd, and Pr) mixed ionic electronic conductors densified at low temperatures
Authors
Devaraj Ramasamy
Aliaksandr L. Shaula
Narendar Nasani
Andrei V. Kovalevsky
Duncan P. Fagg
Publication date
01-08-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 22/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0256-2

Other articles of this Issue 22/2016

Journal of Materials Science 22/2016 Go to the issue

Premium Partners