Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2016 | OriginalPaper | Chapter

15. Comparing Classifiers

Author : Prof. Max Bramer

Published in: Principles of Data Mining

Publisher: Springer London

Abstract

This chapter considers how to compare the performance of alternative classifiers across a range of datasets. The commonly used paired t-test is described and illustrated with worked examples, leading to the use of confidence intervals when the predictive accuracies of two classifiers are found to be significantly different.
Pitfalls involved in comparing classifiers are discussed, leading to alternative ways of comparing their performance that do not rely on comparisons of predictive accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For those not familiar with this notation, which uses the Greek letter ∑ (pronounced ‘sigma’) to denote summation, it is explained in Appendix A.1.1. The simplified variant used here leaves out the subscripts, as the values to be added are obvious. \(\sum{}z\) (read as ‘sigma z’) denotes the sum of all values of z, which here is 7, \(\sum{}z^{2}\) (read as ‘sigma z squared’) represents the sum of all the values of \(z^{2}\), which is 437. The latter is not to be confused with \((\sum{}z)^{2}\), which is the square of \(\sum{}z\), i.e. 49.
 
Literature
[2]
go back to reference Salzberg, S. L. (1997). On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1, 317–327. Kluwer. CrossRef Salzberg, S. L. (1997). On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1, 317–327. Kluwer. CrossRef
Metadata
Title
Comparing Classifiers
Author
Prof. Max Bramer
Copyright Year
2016
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-7307-6_15