Skip to main content
Top
Published in: Journal of Materials Science 9/2016

28-01-2016 | Original Paper

Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition

Authors: Yao Lu, Kun Fu, Jiadeng Zhu, Chen Chen, Meltem Yanilmaz, Mahmut Dirican, Yeqian Ge, Han Jiang, Xiangwu Zhang

Published in: Journal of Materials Science | Issue 9/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

SnO2 microfibers were prepared using a newly developed centrifugal spinning technology with subsequent thermal treatment. The as-prepared SnO2 microfibers were further treated with chemical vapor deposition (CVD) of acetylene using different durations of 30, 60, and 90 min. The surfaces of the CVD-treated SnO2 microfibers are covered with thin carbon layers, and the surface nanoparticles on the SnO2 microfibers were reduced by carbon, producing nano-sized Sn/C whiskers grafted on the backbones. The X-ray diffraction, scanning electron microscopy, and cyclic voltammetry results demonstrate that longer CVD coating duration promotes the formation of Sn/C whiskers on the SnO2 microfibers. The thin carbon coating layers help stabilize the solid electrolyte interface formation while the grafted Sn/C whiskers facilitate better electrolyte–electrode contact. Hence, the CVD-treated SnO2 microfibers exhibit higher initial capacities than the pristine SnO2 microfibers, as well as enhanced capacity retentions after cycling. The results suggest that centrifugal spinning is a promising approach to produce fibrous electrode materials in a rapid and mass production fashion, and the CVD coating process is an effective method to improve the electrochemical performance of the SnO2-based electrode materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef
2.
go back to reference Xue L, Fu K, Li Y, Xu G, Lu Y, Zhang S, Toprakci O, Zhang X (2013) Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode. Nano Energy 2:361–367CrossRef Xue L, Fu K, Li Y, Xu G, Lu Y, Zhang S, Toprakci O, Zhang X (2013) Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode. Nano Energy 2:361–367CrossRef
3.
go back to reference Li Y, Sun Y, Xu G, Lu Y, Zhang S, Xue L, Jur JS, Zhang X (2014) Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. J Mater Chem A 2:11417CrossRef Li Y, Sun Y, Xu G, Lu Y, Zhang S, Xue L, Jur JS, Zhang X (2014) Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. J Mater Chem A 2:11417CrossRef
4.
go back to reference Zhang S, Lin Z, Ji L, Li Y, Xu G, Xue L, Li S, Lu Y, Toprakci O, Zhang X (2012) Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. J Mater Chem 22:14661–14666CrossRef Zhang S, Lin Z, Ji L, Li Y, Xu G, Xue L, Li S, Lu Y, Toprakci O, Zhang X (2012) Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. J Mater Chem 22:14661–14666CrossRef
5.
go back to reference Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3:9353–9378CrossRef Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3:9353–9378CrossRef
6.
go back to reference Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef
7.
go back to reference Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRef Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRef
8.
go back to reference Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 30:1172–1175CrossRef Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 30:1172–1175CrossRef
9.
go back to reference Alcántara R, Jiménez Mateos JM, Tirado JL (2002) Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000°C. J Electrochem Soc 149:A201–A205CrossRef Alcántara R, Jiménez Mateos JM, Tirado JL (2002) Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000°C. J Electrochem Soc 149:A201–A205CrossRef
10.
go back to reference Thomas P, Ghanbaja J, Billaud D, Poincare H, Nancy I (1999) Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Carbon 45:423–430 Thomas P, Ghanbaja J, Billaud D, Poincare H, Nancy I (1999) Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Carbon 45:423–430
11.
go back to reference Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803–A811CrossRef Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803–A811CrossRef
12.
go back to reference Alcántara R, Jiménez-Mateos JM, Lavela P, Tirado JL (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642CrossRef Alcántara R, Jiménez-Mateos JM, Lavela P, Tirado JL (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642CrossRef
13.
go back to reference Wang H, Wu Z, Meng F, Ma D, Huang X, Wang L, Zhang X (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6:56–60CrossRef Wang H, Wu Z, Meng F, Ma D, Huang X, Wang L, Zhang X (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6:56–60CrossRef
14.
go back to reference Fu L, Tang K, Song K, van Aken PA, Yu Y, Maier J (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6:1384–1389CrossRef Fu L, Tang K, Song K, van Aken PA, Yu Y, Maier J (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6:1384–1389CrossRef
15.
go back to reference Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef
16.
go back to reference Chen T, Liu Y, Pan L, Lu T, Yao Y, Sun Z, Chua DHC, Chen Q (2014) Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem A 2:4117–4121CrossRef Chen T, Liu Y, Pan L, Lu T, Yao Y, Sun Z, Chua DHC, Chen Q (2014) Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem A 2:4117–4121CrossRef
17.
go back to reference Ge Y, Jiang H, Fu K, Zhang C, Zhu J, Chen C, Lu Y, Qiu Y, Zhang X (2014) Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. J Power Sources 272:860–865CrossRef Ge Y, Jiang H, Fu K, Zhang C, Zhu J, Chen C, Lu Y, Qiu Y, Zhang X (2014) Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. J Power Sources 272:860–865CrossRef
18.
go back to reference Pan H, Lu X, Yu X, Hu YS, Li H, Yang XQ, Chen L (2013) Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv Energy Mater 3:1186–1194CrossRef Pan H, Lu X, Yu X, Hu YS, Li H, Yang XQ, Chen L (2013) Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv Energy Mater 3:1186–1194CrossRef
19.
go back to reference Ge Y, Jiang H, Zhu J, Lu Y, Chen C, Hu Y, Qiu Y, Zhang X (2015) High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. Electrochim Acta 157:142–148CrossRef Ge Y, Jiang H, Zhu J, Lu Y, Chen C, Hu Y, Qiu Y, Zhang X (2015) High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. Electrochim Acta 157:142–148CrossRef
20.
go back to reference Xue L, Xia X, Tucker T, Fu K, Zhang S, Li S, Zhang X (2013) A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability. J Mater Chem A 1:13807–13813CrossRef Xue L, Xia X, Tucker T, Fu K, Zhang S, Li S, Zhang X (2013) A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability. J Mater Chem A 1:13807–13813CrossRef
21.
go back to reference Li Y, Guo B, Ji L, Lin Z, Xu G, Liang Y, Zhang S, Toprakci O, Hu Y, Alcoutlabi M, Zhang X (2013) Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon 51:185–194CrossRef Li Y, Guo B, Ji L, Lin Z, Xu G, Liang Y, Zhang S, Toprakci O, Hu Y, Alcoutlabi M, Zhang X (2013) Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon 51:185–194CrossRef
22.
go back to reference Liu Y, Zhang N, Jiao L, Tao Z, Chen J (2015) Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater 25:214–220CrossRef Liu Y, Zhang N, Jiao L, Tao Z, Chen J (2015) Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater 25:214–220CrossRef
23.
go back to reference Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C (2013) Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 7:6378–6386CrossRef Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C (2013) Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 7:6378–6386CrossRef
24.
go back to reference Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y, Zhang X (2015) Use of a tin antimony alloy-filled porous carbon nanofiber composite for use as anode in sodium-ion batteries. RSC Adv 5:30793–30800CrossRef Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y, Zhang X (2015) Use of a tin antimony alloy-filled porous carbon nanofiber composite for use as anode in sodium-ion batteries. RSC Adv 5:30793–30800CrossRef
25.
go back to reference Fu K, Xue L, Yildiz O, Li S, Lee H, Li Y, Xu G, Zhou L, Bradford PD, Zhang X (2013) Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. Nano Energy 22:976–986CrossRef Fu K, Xue L, Yildiz O, Li S, Lee H, Li Y, Xu G, Zhou L, Bradford PD, Zhang X (2013) Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. Nano Energy 22:976–986CrossRef
26.
go back to reference Wang Y, Su D, Wang C, Wang G (2013) SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem Commun 29:8–11CrossRef Wang Y, Su D, Wang C, Wang G (2013) SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem Commun 29:8–11CrossRef
27.
go back to reference Su D, Ahn HJ, Wang G (2013) SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 49:3131–3133CrossRef Su D, Ahn HJ, Wang G (2013) SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 49:3131–3133CrossRef
28.
go back to reference Xie X, Su D, Zhang J, Chen S, Mondal AK, Wang G (2015) A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. Nanoscale 7:3164–3172CrossRef Xie X, Su D, Zhang J, Chen S, Mondal AK, Wang G (2015) A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. Nanoscale 7:3164–3172CrossRef
29.
go back to reference Wang YX, Lim YG, Park MS, Chou SL, Kim JH, Liu HK, Dou SX, Kim YJ (2014) Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A 2:529–534CrossRef Wang YX, Lim YG, Park MS, Chou SL, Kim JH, Liu HK, Dou SX, Kim YJ (2014) Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A 2:529–534CrossRef
30.
go back to reference Zhang X, Lu Y (2014) Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polym Rev 54:677–701CrossRef Zhang X, Lu Y (2014) Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polym Rev 54:677–701CrossRef
31.
go back to reference Lu Y, Fu K, Zhang S, Li Y, Chen C, Zhu J, Yanilmaz M, Dirican M, Zhang X (2015) Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. J Power Sources 273:502–510CrossRef Lu Y, Fu K, Zhang S, Li Y, Chen C, Zhu J, Yanilmaz M, Dirican M, Zhang X (2015) Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. J Power Sources 273:502–510CrossRef
32.
go back to reference Lu Y, Li Y, Zhang S, Xu G, Fu K, Lee H, Zhang X (2013) Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur Polym J 49:3834–3845CrossRef Lu Y, Li Y, Zhang S, Xu G, Fu K, Lee H, Zhang X (2013) Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur Polym J 49:3834–3845CrossRef
33.
go back to reference Liu Y, Xu Y, Zhu Y, Culver JN, Lundgren CA, Xu K, Wang C (2013) Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627–3634CrossRef Liu Y, Xu Y, Zhu Y, Culver JN, Lundgren CA, Xu K, Wang C (2013) Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627–3634CrossRef
34.
go back to reference Xu Y, Zhu Y, Liu Y, Wang C (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133CrossRef Xu Y, Zhu Y, Liu Y, Wang C (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133CrossRef
35.
go back to reference Su D, Wang C, Ahn H, Wang G (2013) Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Phys Chem Chem Phys 15:12543–12550CrossRef Su D, Wang C, Ahn H, Wang G (2013) Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Phys Chem Chem Phys 15:12543–12550CrossRef
36.
go back to reference Li L, Kovalchuk A, Tour JM (2014) SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res 7:1319–1326CrossRef Li L, Kovalchuk A, Tour JM (2014) SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res 7:1319–1326CrossRef
37.
go back to reference Zhao X, Zhang Z, Yang F, Fu Y, Lai Y, Li J (2015) Core–shell structured SnO2 hollow spheres–polyaniline composite as an anode for sodium-ion batteries. RSC Adv 5:31465–31471CrossRef Zhao X, Zhang Z, Yang F, Fu Y, Lai Y, Li J (2015) Core–shell structured SnO2 hollow spheres–polyaniline composite as an anode for sodium-ion batteries. RSC Adv 5:31465–31471CrossRef
38.
go back to reference Tian Q, Zhang Z, Yang L, Hirano S, Mater J (2014) Synthesis of SnO2/Sn@ carbon nanospheres dispersed in the interspaces of a three-dimensional SnO2/Sn@ carbon nanowires network, and their application as an anode material for lithium-ion batteries. J Mater Chem A 2:12881–12887CrossRef Tian Q, Zhang Z, Yang L, Hirano S, Mater J (2014) Synthesis of SnO2/Sn@ carbon nanospheres dispersed in the interspaces of a three-dimensional SnO2/Sn@ carbon nanowires network, and their application as an anode material for lithium-ion batteries. J Mater Chem A 2:12881–12887CrossRef
39.
go back to reference Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539CrossRef Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539CrossRef
40.
go back to reference Zhou X, Yin YX, Wan LJ, Guo YG (2012) A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J Mater Chem 22:17456–17459CrossRef Zhou X, Yin YX, Wan LJ, Guo YG (2012) A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J Mater Chem 22:17456–17459CrossRef
Metadata
Title
Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition
Authors
Yao Lu
Kun Fu
Jiadeng Zhu
Chen Chen
Meltem Yanilmaz
Mahmut Dirican
Yeqian Ge
Han Jiang
Xiangwu Zhang
Publication date
28-01-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9768-z

Other articles of this Issue 9/2016

Journal of Materials Science 9/2016 Go to the issue

Premium Partners