Skip to main content
Top

2019 | OriginalPaper | Chapter

19. Comparison of Computational Generalized and Standard Eigenvalue Solutions of Rotating Systems

Authors : Ali Tatar, Loic Salles, Alexander H. Haslam, Christoph W. Schwingshackl

Published in: Topics in Modal Analysis & Testing, Volume 9

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modal analysis is regularly used to compute natural frequencies and mode shapes of structures via eigenvalue solutions in vibration engineering. In this paper, the eigenvalue problem of a 6 degrees of freedom rotating system with gyroscopic effects, including axial, torsional and lateral motion, is investigated using Timoshenko beam theory. The main focus thereby is the investigation of the computational time and the numerical errors in generalized and standard eigenvalue solutions of rotating systems. The finite element method is employed to compute the global stiffness, mass and gyroscopic matrices of the rotating system. The equations of motion is expressed in the state space form to convert the quadratic eigenvalue problem into the generalized and standard forms. The number of elements in the finite element model was varied to investigate the convergence of the natural frequencies and the computational performance of the two eigenvalue solutions. The numerical analyses show that the standard eigenvalue solution is significantly faster than the generalized one with increasing number of elements and the generalized eigenvalue solution can yield wrong solutions when using higher numbers of elements due to the ill-conditioning phenomenon. In this regard, the standard eigenvalue solution gives more reliable results and uses less computational time than the generalized one.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nelson, F.C.: Rotor dynamics without equations. Int. J. COMADEM. 10(3), 2–10 (2007) Nelson, F.C.: Rotor dynamics without equations. Int. J. COMADEM. 10(3), 2–10 (2007)
2.
go back to reference Friswell, M.I.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010) Friswell, M.I.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010)
3.
go back to reference Muszynska, A.: Rotordynamics. CRC Press, Boca Raton (2005) Muszynska, A.: Rotordynamics. CRC Press, Boca Raton (2005)
4.
go back to reference Rao, J.S.: History of Rotating Machinery Dynamics. Springer Science & Business Media, Dordrecht Rao, J.S.: History of Rotating Machinery Dynamics. Springer Science & Business Media, Dordrecht
5.
go back to reference Genta, G.: Dynamics of Rotating Systems. Springer Science & Business Media, New York (2007) Genta, G.: Dynamics of Rotating Systems. Springer Science & Business Media, New York (2007)
6.
go back to reference Yamamoto, T., Ishida, Y.: Linear and Nonlinear Rotordynamics: a Modern Treatment with Applications. A Wiley-Interscience publication, Wiley, Hoboken (2001) Yamamoto, T., Ishida, Y.: Linear and Nonlinear Rotordynamics: a Modern Treatment with Applications. A Wiley-Interscience publication, Wiley, Hoboken (2001)
7.
go back to reference Golub, G.H., Van der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Mathods. 123(1), 35–65 (2000)MathSciNetCrossRef Golub, G.H., Van der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Mathods. 123(1), 35–65 (2000)MathSciNetCrossRef
8.
go back to reference Zheng, Z., Ren, G., Williams, F.W.: The eigenvalue problem for damped gyroscopic systems. Int. J. Mech. Sci. 39(6), 741–750 (1997)CrossRef Zheng, Z., Ren, G., Williams, F.W.: The eigenvalue problem for damped gyroscopic systems. Int. J. Mech. Sci. 39(6), 741–750 (1997)CrossRef
9.
go back to reference Ferng, W.R., Lin, W.-W., Wang, C.-S.: Numerical algorithms for undamped gyroscopic systems. Comput. Math. Appl. 37(1), 49–66 (1999)MathSciNetCrossRef Ferng, W.R., Lin, W.-W., Wang, C.-S.: Numerical algorithms for undamped gyroscopic systems. Comput. Math. Appl. 37(1), 49–66 (1999)MathSciNetCrossRef
10.
go back to reference Qian, J., Lin, W.W.: A numerical method for quadratic eigenvalue problems of gyroscopic systems. J. Sound Vib. 306(1–2), 284–296 (2007)MathSciNetCrossRef Qian, J., Lin, W.W.: A numerical method for quadratic eigenvalue problems of gyroscopic systems. J. Sound Vib. 306(1–2), 284–296 (2007)MathSciNetCrossRef
12.
go back to reference Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems. Springer-Verlag Berlin Heidelberg, Berlin (2005) Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems. Springer-Verlag Berlin Heidelberg, Berlin (2005)
13.
go back to reference Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Revised Edition. SIAM, Philadelphia (2011) Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Revised Edition. SIAM, Philadelphia (2011)
14.
go back to reference Bai, Z.: Progress in the numerical solution of the nonsymmetric eigenvalue problem. Numer. Linear. Algebra. Appl. 2(3), 219–234 (1995)MathSciNetCrossRef Bai, Z.: Progress in the numerical solution of the nonsymmetric eigenvalue problem. Numer. Linear. Algebra. Appl. 2(3), 219–234 (1995)MathSciNetCrossRef
15.
go back to reference Anderson, E., et al.: LAPACK: A portable linear algebra library for high-performance computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, pp. 2–11, New York, USA (1990) Anderson, E., et al.: LAPACK: A portable linear algebra library for high-performance computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, pp. 2–11, New York, USA (1990)
16.
go back to reference Inman, D.J.: Engineering Vibration, 4rth edn. Pearson, Prentice Hall, London (2008) Inman, D.J.: Engineering Vibration, 4rth edn. Pearson, Prentice Hall, London (2008)
17.
go back to reference Kannan, R., Hendry, S., Higham, N.J., Tisseur, F.: Detecting the causes of ill-conditioning in structural finite element models. Comput. Struct. 133, 79–89 (2014)CrossRef Kannan, R., Hendry, S., Higham, N.J., Tisseur, F.: Detecting the causes of ill-conditioning in structural finite element models. Comput. Struct. 133, 79–89 (2014)CrossRef
18.
go back to reference Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite elements. J. Sound Vib. 31(3), 315–330 (1973)CrossRef Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite elements. J. Sound Vib. 31(3), 315–330 (1973)CrossRef
19.
go back to reference Nelson, H.D.: A finite rotating shaft element using Timoshenko beam theory. J. Mech. Des. 102(4), 793 (1980)CrossRef Nelson, H.D.: A finite rotating shaft element using Timoshenko beam theory. J. Mech. Des. 102(4), 793 (1980)CrossRef
21.
go back to reference Berhanu, M.: The Polynomial Eigenvalue Problem, Ph.D. Thesis, University of Manchester, Manchester, UK (2006) Berhanu, M.: The Polynomial Eigenvalue Problem, Ph.D. Thesis, University of Manchester, Manchester, UK (2006)
22.
go back to reference Gutiérrez-Wing, E.S., Ewins D.J.: Modal characterisation of rotating machines. Proceedings of the 19th International Modal Analysis Conference, Orlando, Florida (2001) Gutiérrez-Wing, E.S., Ewins D.J.: Modal characterisation of rotating machines. Proceedings of the 19th International Modal Analysis Conference, Orlando, Florida (2001)
23.
go back to reference Lee, C.: A complex modal testing theory for rotating machinery. Mech. Syst. Signal Process. 5(2), 119–137 (1991)CrossRef Lee, C.: A complex modal testing theory for rotating machinery. Mech. Syst. Signal Process. 5(2), 119–137 (1991)CrossRef
24.
go back to reference Bucher, I., Ewins, D.J.: Modal analysis and testing of rotating structures. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1778), 61–96 (2001)CrossRef Bucher, I., Ewins, D.J.: Modal analysis and testing of rotating structures. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1778), 61–96 (2001)CrossRef
25.
go back to reference Anderson, E., et al.: LAPACK Usersguide: Release 1.0. Argonne National Lab, Chicago, Illinois, USA (1992) Anderson, E., et al.: LAPACK Usersguide: Release 1.0. Argonne National Lab, Chicago, Illinois, USA (1992)
26.
go back to reference Moler, C.: “Matlab incorporates LAPACK,” Increasing the speed and capabilities of matrix computation. MATLAB News & Notes–Winter (2000) Moler, C.: “Matlab incorporates LAPACK,” Increasing the speed and capabilities of matrix computation. MATLAB News & Notes–Winter (2000)
27.
go back to reference Bucher, I.: RotFE 2.1 The finite element rotor analysis package. Faculty of mechanical Engineering, Technion, Haifa, Israel (2000) Bucher, I.: RotFE 2.1 The finite element rotor analysis package. Faculty of mechanical Engineering, Technion, Haifa, Israel (2000)
28.
go back to reference Genta, G., Bassani, D., Delprete, C.: DYNROT: A Matlab Toolbox for Rotordynamics Analysis, Polytechnic University of Turin, Turin, Italy (1994)MATH Genta, G., Bassani, D., Delprete, C.: DYNROT: A Matlab Toolbox for Rotordynamics Analysis, Polytechnic University of Turin, Turin, Italy (1994)MATH
29.
go back to reference Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of Rotating Machines Rotordynamics Software Manual, pp. 1–19. Cambridge University Press, Cambridge (2010) Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of Rotating Machines Rotordynamics Software Manual, pp. 1–19. Cambridge University Press, Cambridge (2010)
30.
go back to reference Pastor, M., Binda, M., Harčarik, T.: Modal assurance criterion. Procedia Eng. 48, 543–548 (2012)CrossRef Pastor, M., Binda, M., Harčarik, T.: Modal assurance criterion. Procedia Eng. 48, 543–548 (2012)CrossRef
31.
go back to reference Ewins, D.J.: Modal Testing: Theory, Practice and Application, Research Studies Press, Baldock, (2000) Ewins, D.J.: Modal Testing: Theory, Practice and Application, Research Studies Press, Baldock, (2000)
Metadata
Title
Comparison of Computational Generalized and Standard Eigenvalue Solutions of Rotating Systems
Authors
Ali Tatar
Loic Salles
Alexander H. Haslam
Christoph W. Schwingshackl
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-74700-2_19

Premium Partners