Skip to main content
Top

2024 | OriginalPaper | Chapter

Comparison of Data-Driven Methods on Discovering the Dynamics of the Unforced Multi-axis Cart System

Authors : Hunter R. Kramer, Sam A. Moore, Brian P. Mann

Published in: Special Topics in Structural Dynamics & Experimental Techniques, Vol. 5

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Data-driven system identification is essential for understanding the behavior of real-world systems. Since the dynamics of such systems are often complicated, complex, or intractable, estimating them is essential to developing a model and applying control. This chapter compares the performance of various data-driven identification methods on a candidate system, the multi-axis cart system (MACS). The MACS is a mass–spring–damper system consisting of four discrete masses arranged in two axes. These two axes are then coupled using a rigid massless link. While the MACS is simple in construction, it can be configured to be linear or nonlinear and exhibits modes with components in two axes. Understanding the dynamics of this simple system can help gain insight into the behavior of more complicated systems.
This chapter compares the performance of four popular data-driven identification methods, SINDy, SINDy-PI, DMD, and Hankel DMD (HDMD). The models were trained using many trajectories tracking the states and derivatives over time. The data was generated by simulating the governing equations for the system which were derived using Lagrange’s equations. To make a more appropriate comparison to real-world measurements, which innately have sensor noise, proportional random Gaussian noise was added. In addition to the trajectory error, several implicit properties of the models were analyzed such as model sparsity and model stability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hemati, M.S., Rowley, C.W., Deem, E.A., Cattafesta, L.N.: De-biasing the dynamic mode decomposition for applied Koopman spectral analysis (2015) Hemati, M.S., Rowley, C.W., Deem, E.A., Cattafesta, L.N.: De-biasing the dynamic mode decomposition for applied Koopman spectral analysis (2015)
2.
go back to reference Dawson, S.T., Hemati, M.S., Williams, M.O., Rowley, C.W.: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Exp. Fluids 57, 1–19 (2016)CrossRef Dawson, S.T., Hemati, M.S., Williams, M.O., Rowley, C.W.: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Exp. Fluids 57, 1–19 (2016)CrossRef
3.
go back to reference Delahunt, C.B., Kutz, J.N.: A toolkit for data-driven discovery of governing equations in high-noise regimes. IEEE Access 10, 31210–31234 (2022)CrossRef Delahunt, C.B., Kutz, J.N.: A toolkit for data-driven discovery of governing equations in high-noise regimes. IEEE Access 10, 31210–31234 (2022)CrossRef
4.
go back to reference Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 474(2219), 20180335 (2018)MathSciNetCrossRef Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 474(2219), 20180335 (2018)MathSciNetCrossRef
5.
go back to reference Brunton, S.L., Proctor, J.L., and Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)MathSciNetCrossRef Brunton, S.L., Proctor, J.L., and Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)MathSciNetCrossRef
6.
go back to reference Kaheman, K., Kutz, J.N., Brunton, S.L.: SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proc. Roy. Soc. A 476(2242), 20200279 (2020)MathSciNetCrossRef Kaheman, K., Kutz, J.N., Brunton, S.L.: SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proc. Roy. Soc. A 476(2242), 20200279 (2020)MathSciNetCrossRef
8.
go back to reference Schmid, P.J.: Dynamic mode decomposition and its variants. Ann. Rev. Fluid Mech. 54(1), 225–254 (2022)CrossRef Schmid, P.J.: Dynamic mode decomposition and its variants. Ann. Rev. Fluid Mech. 54(1), 225–254 (2022)CrossRef
Metadata
Title
Comparison of Data-Driven Methods on Discovering the Dynamics of the Unforced Multi-axis Cart System
Authors
Hunter R. Kramer
Sam A. Moore
Brian P. Mann
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-68901-7_16