Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Comparison of Heart Rate Variability Analysis with Empirical Mode Decomposition and Fourier Transform

Authors : Javier Zelechower, Fernando Pose, Francisco Redelico, Marcelo Risk

Published in: Applied Informatics

Publisher: Springer International Publishing

Abstract

The heart rate variability (HRV) analysis allows the study of the regulation mechanisms of the cardiovascular system, in both normal and pathological conditions, and the power spectral density analysis of the short-term HRV was adopted as a tool for the evaluation of the autonomic function. The Ensemble Empirical Mode Decomposition (EEMD) is an adaptive method generally used to analyze non-stationary signals from non-linear systems. In this work, the performance of the EEMD in the decomposition of the HRV signal in the main spectral components is studied, in a first instance to a synthesized series to calibrate the method and achieve confidence and then to a real HRV database. In conclusion, the results of this work propose the EEMD as useful method for analysis HRV data. The ability of decomposes the main spectral bands and the capability to deal with non-linear and non-stationary behaviors makes the EEMD a powerful method for tracking frequency changes and amplitude modulations in HRV signals generated by autonomic regulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Risk, M., Sobh, J., Barbieri, R., Armentano, R., Ramirez, A., Saul, J.: Variabilidad de las señales cardiorespiratorias. Parte 1: Variabilidad a corto plazo. Revista Argentina de Bioingenieria 2(1) (1996) Risk, M., Sobh, J., Barbieri, R., Armentano, R., Ramirez, A., Saul, J.: Variabilidad de las señales cardiorespiratorias. Parte 1: Variabilidad a corto plazo. Revista Argentina de Bioingenieria 2(1) (1996)
2.
go back to reference Risk, M., Sobh, J., Barbieri, R., Armentano, R., Ramirez, A., Saul, J.: Variabilidad de las señales cardiorespiratorias. Parte 2: Variabilidad a largo plazo. Revista Argentina de Bioingenieria 2(2) (1996) Risk, M., Sobh, J., Barbieri, R., Armentano, R., Ramirez, A., Saul, J.: Variabilidad de las señales cardiorespiratorias. Parte 2: Variabilidad a largo plazo. Revista Argentina de Bioingenieria 2(2) (1996)
3.
go back to reference Electrophysiology, T.F.O.T.E.S.O.C.T.N.A.S.O.P.: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996) Electrophysiology, T.F.O.T.E.S.O.C.T.N.A.S.O.P.: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)
4.
go back to reference Stein, P., Kleiger, R.: Insights from the study of heart rate variability. Ann. Rev. Med. 50(1), 249–261 (1999) CrossRef Stein, P., Kleiger, R.: Insights from the study of heart rate variability. Ann. Rev. Med. 50(1), 249–261 (1999) CrossRef
5.
go back to reference Malik, M., et al.: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17(3), 354–381 (1996) CrossRef Malik, M., et al.: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17(3), 354–381 (1996) CrossRef
6.
go back to reference Huang, N., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998) MathSciNetCrossRef Huang, N., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998) MathSciNetCrossRef
7.
go back to reference Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009) CrossRef Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009) CrossRef
8.
go back to reference Echeverria, J., Crowe, J., Woolfson, M., Hayes-Gill, B.: Application of empirical mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput. 39(4), 471–479 (2001) CrossRef Echeverria, J., Crowe, J., Woolfson, M., Hayes-Gill, B.: Application of empirical mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput. 39(4), 471–479 (2001) CrossRef
9.
go back to reference Neto, E.S., et al.: Assessment of cardiovascular autonomic control by the empirical mode decomposition. Methods Inf. Med. 43(1), 60–65 (2004) CrossRef Neto, E.S., et al.: Assessment of cardiovascular autonomic control by the empirical mode decomposition. Methods Inf. Med. 43(1), 60–65 (2004) CrossRef
10.
go back to reference Acharya, U.R., et al.: Application of empirical mode decomposition (emd) for automated identification of congestive heart failure using heart rate signals. Neural Comput. Appl. 28(10), 3073–3094 (2017) CrossRef Acharya, U.R., et al.: Application of empirical mode decomposition (emd) for automated identification of congestive heart failure using heart rate signals. Neural Comput. Appl. 28(10), 3073–3094 (2017) CrossRef
11.
go back to reference Rajesh, K.N., Dhuli, R.: Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine. Comput. Biol. Med. 87, 271–284 (2017) CrossRef Rajesh, K.N., Dhuli, R.: Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine. Comput. Biol. Med. 87, 271–284 (2017) CrossRef
12.
go back to reference Shi, M., et al.: Early detection of sudden cardiac death by using ensemble empirical mode decomposition-based entropy and classical linear features from heart rate variability signals. Front. Physiol. 11, 118 (2020) CrossRef Shi, M., et al.: Early detection of sudden cardiac death by using ensemble empirical mode decomposition-based entropy and classical linear features from heart rate variability signals. Front. Physiol. 11, 118 (2020) CrossRef
13.
go back to reference Sobh, J.F., Risk, M., Barbieri, R., Saul, J.P.: Database for ecg, arterial blood pressure, and respiration signal analysis: feature extraction, spectral estimation, and parameter quantification. In: Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society, vol. 2, pp. 955–956 (1995). https://​doi.​org/​10.​1109/​IEMBS.​1995.​579378 Sobh, J.F., Risk, M., Barbieri, R., Saul, J.P.: Database for ecg, arterial blood pressure, and respiration signal analysis: feature extraction, spectral estimation, and parameter quantification. In: Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society, vol. 2, pp. 955–956 (1995). https://​doi.​org/​10.​1109/​IEMBS.​1995.​579378
14.
go back to reference Clifford, G.D., Azuaje, F., McSharry, P., et al.: Advanced methods and tools for ECG data analysis. Artech house, Boston (2006) Clifford, G.D., Azuaje, F., McSharry, P., et al.: Advanced methods and tools for ECG data analysis. Artech house, Boston (2006)
15.
go back to reference Jose, A.D., Taylor, R.R., et al.: Autonomic blockade by propranolol and atropine to study intrinsic myocardial function in man. J. Clin. Invest. 48(11), 2019–2031 (1969) CrossRef Jose, A.D., Taylor, R.R., et al.: Autonomic blockade by propranolol and atropine to study intrinsic myocardial function in man. J. Clin. Invest. 48(11), 2019–2031 (1969) CrossRef
16.
go back to reference Berger, R.D., Akselrod, S., Gordon, D., Cohen, R.J.: An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans. Biomed. Eng. 9, 900–904 (1986) CrossRef Berger, R.D., Akselrod, S., Gordon, D., Cohen, R.J.: An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans. Biomed. Eng. 9, 900–904 (1986) CrossRef
17.
go back to reference Laguna, P., Moody, G.B., Mark, R.G.: Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans. Biomed. Eng. 45(6), 698–715 (1998) CrossRef Laguna, P., Moody, G.B., Mark, R.G.: Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans. Biomed. Eng. 45(6), 698–715 (1998) CrossRef
18.
go back to reference Clifford, G.D., Tarassenko, L.: Quantifying errors in spectral estimates of HRV due to beat replacement and resampling. IEEE Trans. Biomed. Eng. 52(4), 630–638 (2005) CrossRef Clifford, G.D., Tarassenko, L.: Quantifying errors in spectral estimates of HRV due to beat replacement and resampling. IEEE Trans. Biomed. Eng. 52(4), 630–638 (2005) CrossRef
19.
20.
go back to reference Zhao, Z., Yang, L., Chen, D., Luo, Y.: A human ECG identification system based on ensemble empirical mode decomposition. Sensors 13(5), 6832–6864 (2013) CrossRef Zhao, Z., Yang, L., Chen, D., Luo, Y.: A human ECG identification system based on ensemble empirical mode decomposition. Sensors 13(5), 6832–6864 (2013) CrossRef
21.
go back to reference Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11(2), 112–114 (2004) CrossRef Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11(2), 112–114 (2004) CrossRef
22.
go back to reference Chen, M., He, A., Feng, K., Liu, G., Wang, Q.: Empirical mode decomposition as a novel approach to study heart rate variability in congestive heart failure assessment. Entropy 21(12), 1169 (2019) MathSciNetCrossRef Chen, M., He, A., Feng, K., Liu, G., Wang, Q.: Empirical mode decomposition as a novel approach to study heart rate variability in congestive heart failure assessment. Entropy 21(12), 1169 (2019) MathSciNetCrossRef
23.
go back to reference Bin Queyam, A., Kumar Pahuja, S., Singh, D.: Quantification of feto-maternal heart rate from abdominal ECG signal using empirical mode decomposition for heart rate variability analysis. Technologies 5(4), 68 (2017) CrossRef Bin Queyam, A., Kumar Pahuja, S., Singh, D.: Quantification of feto-maternal heart rate from abdominal ECG signal using empirical mode decomposition for heart rate variability analysis. Technologies 5(4), 68 (2017) CrossRef
24.
go back to reference Lahiri, M.K., Kannankeril, P.J., Goldberger, J.J.: Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J. Am. Coll. Cardiol 51(18), 1725–1733 (2008) CrossRef Lahiri, M.K., Kannankeril, P.J., Goldberger, J.J.: Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J. Am. Coll. Cardiol 51(18), 1725–1733 (2008) CrossRef
25.
go back to reference Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8(5), 437–448 (2013) CrossRef Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8(5), 437–448 (2013) CrossRef
26.
go back to reference Pan, W., He, A., Feng, K., Li, Y., Wu, D., Liu, G.: Multi-frequency components entropy as novel heart rate variability indices in congestive heart failure assessment. IEEE Access 7, 37708–37717 (2019) CrossRef Pan, W., He, A., Feng, K., Li, Y., Wu, D., Liu, G.: Multi-frequency components entropy as novel heart rate variability indices in congestive heart failure assessment. IEEE Access 7, 37708–37717 (2019) CrossRef
27.
go back to reference Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P.: A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4144–4147. IEEE (2011) Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P.: A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4144–4147. IEEE (2011)
Metadata
Title
Comparison of Heart Rate Variability Analysis with Empirical Mode Decomposition and Fourier Transform
Authors
Javier Zelechower
Fernando Pose
Francisco Redelico
Marcelo Risk
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-89654-6_20

Premium Partner