Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Comparison of Nonlinear System Identification Methods for Free Decay Measurements with Application to MEMS Devices

Authors : Vaclav Ondra, Robin Riethmueller, Matthew R. W. Brake, Christoph W. Schwingshackl, Pavel M. Polunin, Steven W. Shaw

Published in: Sensors and Instrumentation, Volume 5

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A number of methods for non-linear system identification in the time and frequency domain have been developed in the past. These methods have been applied to many systems, ranging from micro-scale devices to macro-scale systems, sometimes with uncertain results. The aim of this paper is to assess the efficiency of a subset of methods and understand their range of usability. The methods considered in this study are the restoring force surface (RFS), Hilbert transform (HT), zero-crossing (ZC), direct quadrature (DQ), short-time Fourier transform (SFT) and zero-crossing for asymmetric systems (ZCA). The accuracy and robustness of the methods against measured noise were evaluated using simulated data from a SDOF system. The application of the selected methods to a simulated non-linear MDOF system was also investigated. It could be shown that under certain conditions these methods may still provide reliable results for MDOF systems although generally their use should be avoided. The methods were also applied to data from a micro-electro-mechanical-systems (MEMS). Unfortunately, due to lack of symmetry in the experimental data, only the RFS and ZCA could have been used, leading to the finding that the MEMS device may be modelled using quadratic stiffness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20 (3), 505–592 (2006)CrossRef Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20 (3), 505–592 (2006)CrossRef
2.
go back to reference Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. Institute of Physics Publishing, Bristol/Philadelphia (2001)CrossRefMATH Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. Institute of Physics Publishing, Bristol/Philadelphia (2001)CrossRefMATH
3.
go back to reference Masri, S.F., Sassi, H., Caughey, T.K.: Nonparametric identification of nearly arbitrary nonlinear systems. J. Appl. Mech. 49, 619–628 (1982)CrossRefMATH Masri, S.F., Sassi, H., Caughey, T.K.: Nonparametric identification of nearly arbitrary nonlinear systems. J. Appl. Mech. 49, 619–628 (1982)CrossRefMATH
4.
go back to reference Crawley, E.F., Aubert, A.C.: Identification of nonlinear structural elements by force-state mapping. AIAA J. 24 (1), 155–162 (1986)CrossRef Crawley, E.F., Aubert, A.C.: Identification of nonlinear structural elements by force-state mapping. AIAA J. 24 (1), 155–162 (1986)CrossRef
5.
go back to reference Kerschen, G., Lenaerts, V., Golinval, J.-C.: Vtt Benchmark: application of the restoring force surface method. Mech. Syst. Signal Process. 17 (1), 189–193 (2003)CrossRef Kerschen, G., Lenaerts, V., Golinval, J.-C.: Vtt Benchmark: application of the restoring force surface method. Mech. Syst. Signal Process. 17 (1), 189–193 (2003)CrossRef
6.
go back to reference Allen, M.S., Sumali, H., Epp, D.S.: Piecewise-linear restoring force surfaces for semi-nonparametric identification of nonlinear systems. Nonlinear Dyn. 54 (1–2), 123–135 (2007)MATH Allen, M.S., Sumali, H., Epp, D.S.: Piecewise-linear restoring force surfaces for semi-nonparametric identification of nonlinear systems. Nonlinear Dyn. 54 (1–2), 123–135 (2007)MATH
7.
go back to reference Flandrin, P.: Time-Frequency/Time-Scale Analysis, vol. 10. Academic Press, San Diego (1999)CrossRefMATH Flandrin, P.: Time-Frequency/Time-Scale Analysis, vol. 10. Academic Press, San Diego (1999)CrossRefMATH
8.
go back to reference Feldman, M.: Hilbert Transform Application in Mechanical Vibration. John Wiley & Sons, Ltd., Chichester (2011)CrossRef Feldman, M.: Hilbert Transform Application in Mechanical Vibration. John Wiley & Sons, Ltd., Chichester (2011)CrossRef
9.
go back to reference Neild, S.A., McFadden, P.D., Williams, M.S.: A review of time-frequency methods for structural vibration analysis. Eng. Struct. 25 (6), 713–728 (2003)CrossRef Neild, S.A., McFadden, P.D., Williams, M.S.: A review of time-frequency methods for structural vibration analysis. Eng. Struct. 25 (6), 713–728 (2003)CrossRef
10.
go back to reference Staszewski, W.J.: Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. J. Sound Vib. 214, 639–658 (1998)CrossRef Staszewski, W.J.: Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. J. Sound Vib. 214, 639–658 (1998)CrossRef
11.
go back to reference Pai, F.P.: Time-frequency characterization of nonlinear normal modes and challenges in nonlinearity identification of dynamical systems. Mech. Syst. Signal Process. 25 (7), 2358–2374 (2011)CrossRef Pai, F.P.: Time-frequency characterization of nonlinear normal modes and challenges in nonlinearity identification of dynamical systems. Mech. Syst. Signal Process. 25 (7), 2358–2374 (2011)CrossRef
12.
go back to reference Polunin, P.M., Yang, Y., Dykman, M.I., Kenny, T.W., Shaw, S.W.: Characterization of MEMS resonator nonlinearities using the ringdown response. J. Microelectromech. Syst. 25 (2), 297–303 (2016)CrossRef Polunin, P.M., Yang, Y., Dykman, M.I., Kenny, T.W., Shaw, S.W.: Characterization of MEMS resonator nonlinearities using the ringdown response. J. Microelectromech. Syst. 25 (2), 297–303 (2016)CrossRef
13.
go back to reference Londoño, J.M., Neild, S.A., Cooper, J.E.: Identification of backbone curves of nonlinear systems from resonance decay responses. J. Sound Vib. 348, 224–238 (2015)CrossRef Londoño, J.M., Neild, S.A., Cooper, J.E.: Identification of backbone curves of nonlinear systems from resonance decay responses. J. Sound Vib. 348, 224–238 (2015)CrossRef
14.
go back to reference Huang, N.E., Wu, Z., Long, S.R., Arnold, K.C., Chen, X., Blank, K.: On instantaneous frequency. Adv. Adapt. Data Anal. 1 (2), 177–229 (2009)MathSciNetCrossRef Huang, N.E., Wu, Z., Long, S.R., Arnold, K.C., Chen, X., Blank, K.: On instantaneous frequency. Adv. Adapt. Data Anal. 1 (2), 177–229 (2009)MathSciNetCrossRef
15.
go back to reference Ondra, V., Yushi, Y., Sever, I., Schwingshackl, C.: A method for non-parametric identification of non-linear vibration systems with asymmetric restoring forces from a free decay response. J. Sound Vib. (2017, under review) Ondra, V., Yushi, Y., Sever, I., Schwingshackl, C.: A method for non-parametric identification of non-linear vibration systems with asymmetric restoring forces from a free decay response. J. Sound Vib. (2017, under review)
16.
go back to reference Ondra, V., Sever, I., Schwingshackl, C.: Non-parametric identification of asymmetric signals and characterization of a class of non-linear systems based on frequency modulation. In: Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix (2016) Ondra, V., Sever, I., Schwingshackl, C.: Non-parametric identification of asymmetric signals and characterization of a class of non-linear systems based on frequency modulation. In: Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix (2016)
17.
go back to reference Feldman, M.: Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25 (3), 735–802 (2011)CrossRef Feldman, M.: Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25 (3), 735–802 (2011)CrossRef
18.
go back to reference Pai, F.P.: Nonlinear vibration characterization by signal decomposition. J. Sound Vib. 307 (3–5), 527–544 (2007) Pai, F.P.: Nonlinear vibration characterization by signal decomposition. J. Sound Vib. 307 (3–5), 527–544 (2007)
19.
go back to reference Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454 (1971), 903–995 (1998)MathSciNetCrossRefMATH Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454 (1971), 903–995 (1998)MathSciNetCrossRefMATH
20.
go back to reference Noel, J.P., Kerschen, G., Newerla, A.: Application of the Restoring Force Surface Method to a Real-Life Spacecraft Structure, pp. 1–19. Springer, New York (2012) Noel, J.P., Kerschen, G., Newerla, A.: Application of the Restoring Force Surface Method to a Real-Life Spacecraft Structure, pp. 1–19. Springer, New York (2012)
21.
go back to reference Worden, K.: Data processing and experiment design for the restoring force surface method, part I: integration and differentiation of measured time data. Mech. Syst. Signal Process. 4 (4), 295–319 (1990)CrossRef Worden, K.: Data processing and experiment design for the restoring force surface method, part I: integration and differentiation of measured time data. Mech. Syst. Signal Process. 4 (4), 295–319 (1990)CrossRef
22.
go back to reference Wood, G.A.: Data smoothing and differentiation procedures in biomechanics. Exerc. Sport Sci. Rev. 10 (1), 308–362 (1982) Wood, G.A.: Data smoothing and differentiation procedures in biomechanics. Exerc. Sport Sci. Rev. 10 (1), 308–362 (1982)
23.
go back to reference Feldman, M.: Non-linear system vibration analysis using Hilbert transform–I. Free vibration analysis method ‘Freevib’. Mech. Syst. Signal Process. 8 (2), 119–127 (1994) Feldman, M.: Non-linear system vibration analysis using Hilbert transform–I. Free vibration analysis method ‘Freevib’. Mech. Syst. Signal Process. 8 (2), 119–127 (1994)
24.
go back to reference Marple, S.L.: Computing the discrete-time analytic signal via FFT. IEEE Trans. Signal Process. 47, 2600–2603 (1999)CrossRefMATH Marple, S.L.: Computing the discrete-time analytic signal via FFT. IEEE Trans. Signal Process. 47, 2600–2603 (1999)CrossRefMATH
25.
go back to reference Pai, F.P., Palazotto, A.N.: HHT-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems. Int. J. Mech. Sci. 50 (12), 1619–1635 (2008)CrossRef Pai, F.P., Palazotto, A.N.: HHT-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems. Int. J. Mech. Sci. 50 (12), 1619–1635 (2008)CrossRef
26.
go back to reference Cohen, L.: Time-Frequency Analysis: Theory and Applications. Prentice-Hall, Inc., Upper Saddle River (1995) Cohen, L.: Time-Frequency Analysis: Theory and Applications. Prentice-Hall, Inc., Upper Saddle River (1995)
27.
go back to reference Bedrosian, E.: A product theorem for hilbert transforms. Proc. IEEE 51 (5), 868–869 (1963)CrossRef Bedrosian, E.: A product theorem for hilbert transforms. Proc. IEEE 51 (5), 868–869 (1963)CrossRef
28.
go back to reference Nuttall, A.H., Bedrosian, E.: On the quadrature approximation to the hilbert transform of modulated signals. Proc. IEEE 54 (10), 1458–1459 (1966)CrossRef Nuttall, A.H., Bedrosian, E.: On the quadrature approximation to the hilbert transform of modulated signals. Proc. IEEE 54 (10), 1458–1459 (1966)CrossRef
29.
go back to reference Huang, N.E., Shen, S.S.P.: Hilbert-Huang Transform and Its Applications. World Scientific Publishing Co. Ltd., Singapore (2005)CrossRefMATH Huang, N.E., Shen, S.S.P.: Hilbert-Huang Transform and Its Applications. World Scientific Publishing Co. Ltd., Singapore (2005)CrossRefMATH
30.
go back to reference Pegram, G.G.S., Peel, M.C., McMahon, T.A.: Empirical mode decomposition using rational splines: an application to rainfall time series. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 464 (2094), 1483–1501 (2008)MathSciNetCrossRefMATH Pegram, G.G.S., Peel, M.C., McMahon, T.A.: Empirical mode decomposition using rational splines: an application to rainfall time series. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 464 (2094), 1483–1501 (2008)MathSciNetCrossRefMATH
31.
go back to reference Yang, L., Yang, Z., Zhou, F., Yang, L.: A novel envelope model based on convex constrained optimization. Digital Signal Process. 29, 138–146 (2014)MathSciNetCrossRef Yang, L., Yang, Z., Zhou, F., Yang, L.: A novel envelope model based on convex constrained optimization. Digital Signal Process. 29, 138–146 (2014)MathSciNetCrossRef
32.
go back to reference Griffel, B., Zia, M.K., Semmlow, J.L., Fridman, V., Saponieri, C.: Comparison of instantaneous frequency analysis methods for acoustic detection of coronary artery disease. In: Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–6. IEEE, Piscataway (2011) Griffel, B., Zia, M.K., Semmlow, J.L., Fridman, V., Saponieri, C.: Comparison of instantaneous frequency analysis methods for acoustic detection of coronary artery disease. In: Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–6. IEEE, Piscataway (2011)
33.
34.
go back to reference Czarnecki, K.: The instantaneous frequency rate spectrogram. Mech. Syst. Signal Process. 66–67, 361–373 (2016)CrossRef Czarnecki, K.: The instantaneous frequency rate spectrogram. Mech. Syst. Signal Process. 66–67, 361–373 (2016)CrossRef
35.
go back to reference Rother, A., Jelali, M., Söffker, D.: A brief review and a first application of time-frequency-based analysis methods for monitoring of strip rolling mills. J. Process Control 35, 65–79 (2015)CrossRef Rother, A., Jelali, M., Söffker, D.: A brief review and a first application of time-frequency-based analysis methods for monitoring of strip rolling mills. J. Process Control 35, 65–79 (2015)CrossRef
36.
go back to reference Feldman, M.: Nonparametric identification of asymmetric nonlinear vibration systems with the Hilbert transform. J. Sound Vib. 331 (14), 3386–3396 (2012)CrossRef Feldman, M.: Nonparametric identification of asymmetric nonlinear vibration systems with the Hilbert transform. J. Sound Vib. 331 (14), 3386–3396 (2012)CrossRef
37.
go back to reference Peeters, M., Kerschen, G., Golinval, J.-C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330 (3), 486–509 (2011)CrossRef Peeters, M., Kerschen, G., Golinval, J.-C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330 (3), 486–509 (2011)CrossRef
38.
39.
go back to reference Polunin, P., Yang, Y., Atalaya, J., Ng, E., Strachan, S., Shoshani, O., Dykman, M., Shaw, S., Kenny, T. Characterizing MEMS nonlinearities directly: the ring-down measurements. In: 2015 Transducers – 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 2176–2179. IEEE, Piscataway (2015) Polunin, P., Yang, Y., Atalaya, J., Ng, E., Strachan, S., Shoshani, O., Dykman, M., Shaw, S., Kenny, T. Characterizing MEMS nonlinearities directly: the ring-down measurements. In: 2015 Transducers – 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 2176–2179. IEEE, Piscataway (2015)
Metadata
Title
Comparison of Nonlinear System Identification Methods for Free Decay Measurements with Application to MEMS Devices
Authors
Vaclav Ondra
Robin Riethmueller
Matthew R. W. Brake
Christoph W. Schwingshackl
Pavel M. Polunin
Steven W. Shaw
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-54987-3_5

Premium Partners