Skip to main content
Top

2023 | OriginalPaper | Chapter

Comparison of Prediction Accuracy Between Interpolation and Artificial Intelligence Application of CFD Data for 3D Cavity Flow

Authors : M. Diederich, L. Di Bartolo, A. C. Benim

Published in: Frontiers in Industrial and Applied Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the comparison of prediction accuracy between interpolation and AI techniques for 3D cavity flow using CFD data. It begins by introducing the parallel developments in AI and CFD, followed by a detailed test case using a 3D cavity problem with experimental data. The chapter then explores mathematical and numerical flow modeling using ANSYS Fluent, and develops two approaches: a simple interpolation model and an advanced AI model using Keras. The accuracy of these models is quantitatively evaluated using two error calculations, and the results show that while both models perform well at higher Reynolds numbers, the interpolation model outperforms the AI approach at lower Reynolds numbers. The chapter concludes with a comparison of the velocity profiles along traversal lines and discusses future developments for a supervision tool that will compare predictions and form smaller submodels for areas with significant differences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chollet, F.: Deep Learning mit Python und Keras Das Praxis-Handbuch. MITP Verlag, Frechen (2018) Chollet, F.: Deep Learning mit Python und Keras Das Praxis-Handbuch. MITP Verlag, Frechen (2018)
2.
go back to reference Vargas, R., Misavi, A., Ruiz, R.: Deep learning: a review. Adv. Intell. Syst. Comput. 2018100218 (2018) Vargas, R., Misavi, A., Ruiz, R.: Deep learning: a review. Adv. Intell. Syst. Comput. 2018100218 (2018)
3.
go back to reference Selle, S.: Künstliche Neuronale Netzwerke und Deep Learning. Lecture in University of Applied Sciences Business School (2018) Selle, S.: Künstliche Neuronale Netzwerke und Deep Learning. Lecture in University of Applied Sciences Business School (2018)
4.
go back to reference Benim, A.C., Iqbal, S., Joos, F., Wiedermann, A.: Numerical analysis of turbulent combustion in a model swirl gas turbine combustor. J. Combust., Article ID 2572035 (2016) Benim, A.C., Iqbal, S., Joos, F., Wiedermann, A.: Numerical analysis of turbulent combustion in a model swirl gas turbine combustor. J. Combust., Article ID 2572035 (2016)
5.
go back to reference Pfeiffelmann, B., Benim, A.C., Joos, F.: A finite volume analysis of thermoelectric generators. Heat Transfer Eng. 40(17–18), 1442–1450 (2019)CrossRef Pfeiffelmann, B., Benim, A.C., Joos, F.: A finite volume analysis of thermoelectric generators. Heat Transfer Eng. 40(17–18), 1442–1450 (2019)CrossRef
6.
go back to reference Cagan, M., Benim, A.C., Gunes, D.: Computational analysis of gas turbine preswirl system operation characteristics. WSEAS Trans. Fluid Mech. 4(4), 117–126 (2009) Cagan, M., Benim, A.C., Gunes, D.: Computational analysis of gas turbine preswirl system operation characteristics. WSEAS Trans. Fluid Mech. 4(4), 117–126 (2009)
7.
go back to reference Benim, A.C., Pfeiffelmann, B., Oclon, P., Taler, J.: Computational investigation of a lifted hydrogen flame with LES and FGM. Energy 173, 1172–1181 (2019)CrossRef Benim, A.C., Pfeiffelmann, B., Oclon, P., Taler, J.: Computational investigation of a lifted hydrogen flame with LES and FGM. Energy 173, 1172–1181 (2019)CrossRef
8.
go back to reference Benim, A.C., Diederich, M., Gül, F., Oclon, P., Taler, J.: Computational and experimental investigation of the aerodynamics and aeroacoustics of a small wind turbine with quasi-3D optimization. Energy Convers. Manage. 177, 143–149 (2018)CrossRef Benim, A.C., Diederich, M., Gül, F., Oclon, P., Taler, J.: Computational and experimental investigation of the aerodynamics and aeroacoustics of a small wind turbine with quasi-3D optimization. Energy Convers. Manage. 177, 143–149 (2018)CrossRef
9.
go back to reference Andrews, A.: Progress and challenges in the application of artificial intelligence to computational fluid dynamics. AIAA J. 26(1), 40–46 (1988)CrossRef Andrews, A.: Progress and challenges in the application of artificial intelligence to computational fluid dynamics. AIAA J. 26(1), 40–46 (1988)CrossRef
10.
go back to reference Wang, B., Wang, J.: Application of artificial intelligence in computational fluid dynamics. Ind. Eng. Chem. Res. 60(7), 2772–2790 (2021)CrossRef Wang, B., Wang, J.: Application of artificial intelligence in computational fluid dynamics. Ind. Eng. Chem. Res. 60(7), 2772–2790 (2021)CrossRef
11.
go back to reference Usman, A., Muhammad, R., Muhammad, S., Ali, N.: Machine learning computational fluid dynamics. Swedish Artificial Intelligence Society Workshop (SAIS), pp. 46–49. IEEE (2021) Usman, A., Muhammad, R., Muhammad, S., Ali, N.: Machine learning computational fluid dynamics. Swedish Artificial Intelligence Society Workshop (SAIS), pp. 46–49. IEEE (2021)
12.
go back to reference Kochkov, D., Smith, J.A., Aliyeva, A., Wang, Q., Brenner, M.P., Hoyer, S.: Machine learning–accelerated computational fluid dynamics. PNAS 118(21), e2101784118 (2021)CrossRef Kochkov, D., Smith, J.A., Aliyeva, A., Wang, Q., Brenner, M.P., Hoyer, S.: Machine learning–accelerated computational fluid dynamics. PNAS 118(21), e2101784118 (2021)CrossRef
14.
go back to reference Panwar, V., Vandrangi, S.K., Emani, S.: Artificial intelligence-based computational fluid dynamics approaches. Hybrid Comput. Intell. 8, 173–190 (2020)CrossRef Panwar, V., Vandrangi, S.K., Emani, S.: Artificial intelligence-based computational fluid dynamics approaches. Hybrid Comput. Intell. 8, 173–190 (2020)CrossRef
15.
go back to reference Rojek, K., Wyrzykowski, R., Gepner, P.: AI-accelerated CFD simulation based on OpenFOAM and CPU/GPU computing. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science—ICCS 2021, pp. 373–385. Springer, Berlin (2021)CrossRef Rojek, K., Wyrzykowski, R., Gepner, P.: AI-accelerated CFD simulation based on OpenFOAM and CPU/GPU computing. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science—ICCS 2021, pp. 373–385. Springer, Berlin (2021)CrossRef
16.
go back to reference Chinesta, F., Cueto, E., Grmela, M., Moya, B., Pavelka, M., Sipka, M.: Learning physics from data: a thermodynamic interpretation. In: Barbaresco, F., Nielsen, F. (eds.) Geometric Structures of Statistical Physics, Information Geometry, and Learning, pp. 267–297. Springer, Berlin (2021)MATH Chinesta, F., Cueto, E., Grmela, M., Moya, B., Pavelka, M., Sipka, M.: Learning physics from data: a thermodynamic interpretation. In: Barbaresco, F., Nielsen, F. (eds.) Geometric Structures of Statistical Physics, Information Geometry, and Learning, pp. 267–297. Springer, Berlin (2021)MATH
17.
go back to reference Alfaro, I., Gonzalez, D., Zlotnik, S., Diez, P., Cueto, E., Chinesta, F.: An error estimator for real-time simulators based on model order reduction. Adv. Model. Simul. Eng. Sci 2, Article 30 (2015) Alfaro, I., Gonzalez, D., Zlotnik, S., Diez, P., Cueto, E., Chinesta, F.: An error estimator for real-time simulators based on model order reduction. Adv. Model. Simul. Eng. Sci 2, Article 30 (2015)
18.
go back to reference Ghnatios, C., El Haber, G., Duval, J.-L., Zoane, M., Chinesta, F.: Artificial intelligence based space reduction of structural nodels. SAFORM 2021 (2021) Ghnatios, C., El Haber, G., Duval, J.-L., Zoane, M., Chinesta, F.: Artificial intelligence based space reduction of structural nodels. SAFORM 2021 (2021)
19.
go back to reference Hernández, Q., Badias, A., Gonzalez, D., Chinesta, F., Cueto, E.: Deep learning of thermodynamics-aware reduced-order models from data. Comput. Methods Appl. Mech. Eng. 379(4), 113763 (2021)CrossRefMATH Hernández, Q., Badias, A., Gonzalez, D., Chinesta, F., Cueto, E.: Deep learning of thermodynamics-aware reduced-order models from data. Comput. Methods Appl. Mech. Eng. 379(4), 113763 (2021)CrossRefMATH
20.
go back to reference Hamzi, B., Owhadi, H.: Learning dynamical systems from data: a simple cross-validation perspective, part I: Parametric kernel flows. Physica D 421(3), 132817 (2021)CrossRefMATH Hamzi, B., Owhadi, H.: Learning dynamical systems from data: a simple cross-validation perspective, part I: Parametric kernel flows. Physica D 421(3), 132817 (2021)CrossRefMATH
23.
go back to reference Champaney, V., Sancarlos, A., Chinesta, F., Cueto, E., Gonzalez, D., Alfaro, I., Guevelou, S., Duvalm J. L., Chambard, A., Mourguew P.: Hybrid twins—a highway towards a performance-based engineering. Part I: Advanced model order reduction enabling real-time Physics. ESAFORM 2021 (2021) Champaney, V., Sancarlos, A., Chinesta, F., Cueto, E., Gonzalez, D., Alfaro, I., Guevelou, S., Duvalm J. L., Chambard, A., Mourguew P.: Hybrid twins—a highway towards a performance-based engineering. Part I: Advanced model order reduction enabling real-time Physics. ESAFORM 2021 (2021)
24.
go back to reference Cueto, E., Gonzalez, D., Badias, A., Chinesta, F., Hascoet, N., Duval, J.-L.: Hybrid Twins. Part II. Real-time, data-driven modeling. ESAFORM 2021 (2021) Cueto, E., Gonzalez, D., Badias, A., Chinesta, F., Hascoet, N., Duval, J.-L.: Hybrid Twins. Part II. Real-time, data-driven modeling. ESAFORM 2021 (2021)
25.
go back to reference Moya, B., Badias, A., Alfaro, I, Chinesta, F., Cueto, E.: Digital twins that learn and correct themselves. Int. J. Numer. Methods Eng., 1–11 (2020) Moya, B., Badias, A., Alfaro, I, Chinesta, F., Cueto, E.: Digital twins that learn and correct themselves. Int. J. Numer. Methods Eng., 1–11 (2020)
26.
go back to reference Abali, B.E., Savaş, Ö.: Experimental validation of computational fluid dynamics for solving isothermal and incompressible viscous fluid flow. SN Appl. Sci. 2, 1500 (2020)CrossRef Abali, B.E., Savaş, Ö.: Experimental validation of computational fluid dynamics for solving isothermal and incompressible viscous fluid flow. SN Appl. Sci. 2, 1500 (2020)CrossRef
Metadata
Title
Comparison of Prediction Accuracy Between Interpolation and Artificial Intelligence Application of CFD Data for 3D Cavity Flow
Authors
M. Diederich
L. Di Bartolo
A. C. Benim
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_35

Premium Partners