Skip to main content
Top

2024 | OriginalPaper | Chapter

Comparison of Ridge Regression and Principal Component Regression in Overcoming Multicollinearity of Factors Affecting Poverty in Indonesia

Authors : R. Rahmawati, L. Harsyiah, Z. W. Baskara

Published in: Applied and Computational Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Regression analysis is a statistical method that aims to measure the correlation or relationship between the independent variables on the dependent variable. The Regression analysis has several assumptions that must be met to obtain a good model. One of the assumptions that must be fulfilled is the absence of multicollinearity between the independent variables. Multicollinearity is a situation where there is a relationship or correlation between independent variables which causes the accuracy of the model to decrease. This study aims to compare ridge regression and Principal Component Regression (PCR) in overcoming multicollinearity. Ridge regression is a modification of the least squares method that adds a bias constant to the main diagonal of the variance–covariance matrix. The calculation of the bias constant in this study uses the Kibria method. Principal component regression is a combination of Principal Component Analysis (PCA) and regression analysis, this method works by regressing the main components. The comparison criteria used are \({R}^{2}\) and \({R}_{adj}^{2}\). The research data used is on factors influencing poverty in Indonesia in 2021. Based on the calculation results, it is found that the accuracy of the ridge regression model is 83.6%, while the accuracy of the principal component regression model is 77.5%, this value is seen from the largest value of \({R}^{2}\). Furthermore, the \({R}_{adj}^{2}\) value of the ridge regression model is greater than the \({R}_{adj}^{2}\) value of the principal component regression model, namely 0.7991 > 0.761. Thus, it can be concluded that ridge regression with Kibria parameters is better than principal component regression in overcoming multicollinearity in data on factors that influence poverty in Indonesia.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W.: Applied Linier Statistical Models, 5th edn. McGraw-Hill (2005) Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W.: Applied Linier Statistical Models, 5th edn. McGraw-Hill (2005)
2.
go back to reference Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to linear regression analysis, 5th edn. Wiley (2012) Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to linear regression analysis, 5th edn. Wiley (2012)
3.
go back to reference Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd Edition Springer, California (2008) Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd Edition Springer, California (2008)
4.
go back to reference Herawati, N., Nisa, K., Setiawan, E., Nusyirwan, N., Tiryono, T.: Regularized multiple regression methods to deal with severe multicollinearity. Int. J. Stat. Appl. 8(4) (2018) Herawati, N., Nisa, K., Setiawan, E., Nusyirwan, N., Tiryono, T.: Regularized multiple regression methods to deal with severe multicollinearity. Int. J. Stat. Appl. 8(4) (2018)
5.
go back to reference Younker, J.: Ridge Estimation and its Modifications for Linear Regression for Linear Regression with Deterministic or Stochastic Predictors. University of Ottawa, Canada (2012) Younker, J.: Ridge Estimation and its Modifications for Linear Regression for Linear Regression with Deterministic or Stochastic Predictors. University of Ottawa, Canada (2012)
6.
go back to reference Draper, N.R., Smith, H.: Applied Regression Analysis, 3rd Edition Wiley, New York (1998)CrossRef Draper, N.R., Smith, H.: Applied Regression Analysis, 3rd Edition Wiley, New York (1998)CrossRef
7.
go back to reference Mattjik, A.A., Sumertajaya, I.M.: Sidik Peubah Ganda. IPB PRESS, Bogor (2011) Mattjik, A.A., Sumertajaya, I.M.: Sidik Peubah Ganda. IPB PRESS, Bogor (2011)
8.
go back to reference James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. Springer, New York (2013)CrossRef James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. Springer, New York (2013)CrossRef
Metadata
Title
Comparison of Ridge Regression and Principal Component Regression in Overcoming Multicollinearity of Factors Affecting Poverty in Indonesia
Authors
R. Rahmawati
L. Harsyiah
Z. W. Baskara
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2136-8_4

Premium Partners