Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 6/2019

07-02-2019 | Original Article

Comparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring

Authors: Riccardo Pernice, Michal Javorka, Jana Krohova, Barbora Czippelova, Zuzana Turianikova, Alessandro Busacca, Luca Faes, Member, IEEE

Published in: Medical & Biological Engineering & Computing | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Heart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also employed for the continuous noninvasive monitoring of blood pressure. In this work, we carry out a thorough analysis and comparison of short-term variability indexes computed from HRV time series obtained from the ECG and from PRV time series obtained from continuous blood pressure (CBP) signals, in order to evaluate the reliability of using CBP-based recordings in place of standard ECG tracks. The analysis has been carried out on short time series (300 beats) of HRV and PRV in 76 subjects studied in different conditions: resting in the supine position, postural stress during 45° head-up tilt, and mental stress during computation of arithmetic test. Nine different indexes have been taken into account, computed in the time domain (mean, variance, root mean square of the successive differences), frequency domain (low-to-high frequency power ratio LF/HF, HF spectral power, and central frequency), and information domain (entropy, conditional entropy, self entropy). Thorough validation has been performed using comparison of the HRV and PRV distributions, robust linear regression, and Bland–Altman plots. Results demonstrate the feasibility of extracting HRV indexes from CBP-based data, showing an overall relatively good agreement of time-, frequency-, and information-domain measures. The agreement decreased during postural and mental arithmetic stress, especially with regard to band-power ratio, conditional, and self-entropy. This finding suggests to use caution in adopting PRV as a surrogate of HRV during stress conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Shaffer F, Ginsberg JP (2017) An overview of heart rate variability metrics and norms. Front Public Health 5(258):1–17 Shaffer F, Ginsberg JP (2017) An overview of heart rate variability metrics and norms. Front Public Health 5(258):1–17
2.
go back to reference Rajendra Acharya U, Paul Joseph K, Kannathal N, Min Lim C, Suri JS (2007) Heart rate variability: a review. Med Bio Eng Comput 44(12):1031–1051CrossRef Rajendra Acharya U, Paul Joseph K, Kannathal N, Min Lim C, Suri JS (2007) Heart rate variability: a review. Med Bio Eng Comput 44(12):1031–1051CrossRef
3.
go back to reference Javorka M, Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Wiszt R, Faes L (2018) Towards understanding the complexity of cardiovascular oscillations: insights from information theory. Comput Biol Med 98:48–57PubMedCrossRef Javorka M, Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Wiszt R, Faes L (2018) Towards understanding the complexity of cardiovascular oscillations: insights from information theory. Comput Biol Med 98:48–57PubMedCrossRef
4.
go back to reference Porta A, Di Rienzo M, Wessel N, Kurths J (2009) Addressing the complexity of cardiovascular regulation. Phil Trans A Math Phys Eng Sci 367:1215–1218CrossRef Porta A, Di Rienzo M, Wessel N, Kurths J (2009) Addressing the complexity of cardiovascular regulation. Phil Trans A Math Phys Eng Sci 367:1215–1218CrossRef
5.
go back to reference Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, Peng CK (2007) Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. Europhys Lett 77(6):68008PubMedPubMedCentralCrossRef Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, Peng CK (2007) Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. Europhys Lett 77(6):68008PubMedPubMedCentralCrossRef
6.
go back to reference Malik M, Bigger J, Camm A, Kleiger R (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17:354–381CrossRef Malik M, Bigger J, Camm A, Kleiger R (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17:354–381CrossRef
7.
go back to reference Porta A, De Maria B, Bari V, Marchi A, Faes L (2017) Are nonlinear model-free approaches for the assessment of the entropy-based complexity of the cardiac control superior to a linear model-based one? IEEE Trans Biomed Eng 64(6):1287–1296PubMedCrossRef Porta A, De Maria B, Bari V, Marchi A, Faes L (2017) Are nonlinear model-free approaches for the assessment of the entropy-based complexity of the cardiac control superior to a linear model-based one? IEEE Trans Biomed Eng 64(6):1287–1296PubMedCrossRef
8.
go back to reference Taelman J, Vandeput S, Vlemincx E, Spaepen A, Van Huffel S (2011) Instantaneous changes in heart rate regulation due to mental load in simulated office work. Eur J Appl Physiol 111(7):1497–1505PubMedCrossRef Taelman J, Vandeput S, Vlemincx E, Spaepen A, Van Huffel S (2011) Instantaneous changes in heart rate regulation due to mental load in simulated office work. Eur J Appl Physiol 111(7):1497–1505PubMedCrossRef
9.
go back to reference Akselrod S, Gordon D, Ubel F, Shannon D, Berger A, Cohen R (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science (80-.) 213(4504):220–222CrossRef Akselrod S, Gordon D, Ubel F, Shannon D, Berger A, Cohen R (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science (80-.) 213(4504):220–222CrossRef
10.
go back to reference Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A (2007b) Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans Biomed Eng 54(1):94–106PubMedCrossRef Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A (2007b) Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans Biomed Eng 54(1):94–106PubMedCrossRef
11.
go back to reference Valente M, Javorka M, Porta A, Bari V, Krohova J, Czippelova B, Turianikova Z, Nollo G, Faes L (2018) Univariate and multivariate conditional entropy measures for the characterization of short-term cardiovascular complexity under physiological stress. Physiol Meas 39(1):014002PubMedCrossRef Valente M, Javorka M, Porta A, Bari V, Krohova J, Czippelova B, Turianikova Z, Nollo G, Faes L (2018) Univariate and multivariate conditional entropy measures for the characterization of short-term cardiovascular complexity under physiological stress. Physiol Meas 39(1):014002PubMedCrossRef
12.
go back to reference Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049PubMedCrossRef Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049PubMedCrossRef
13.
go back to reference Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N (2007a) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103(4):1143–1149PubMedCrossRef Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N (2007a) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103(4):1143–1149PubMedCrossRef
14.
go back to reference Porta A, Baselli G, Liberati D, Montano N, Cogliati C, Gnecchi-Ruscone T, Malliani A, Cerutti S (1998) Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol Cybern 78(1):71–78PubMedCrossRef Porta A, Baselli G, Liberati D, Montano N, Cogliati C, Gnecchi-Ruscone T, Malliani A, Cerutti S (1998) Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol Cybern 78(1):71–78PubMedCrossRef
15.
go back to reference Wibral M, Lizier JT, Priesemann V (2015) Bits from brains for biologically inspired computing. Front robot AI 2:5CrossRef Wibral M, Lizier JT, Priesemann V (2015) Bits from brains for biologically inspired computing. Front robot AI 2:5CrossRef
16.
go back to reference Sun Y, Thakor N (2016) Photoplethysmography revisited: from contact to noncontact, from point to imaging. IEEE Trans Biomed Eng 63(3):463–477PubMedCrossRef Sun Y, Thakor N (2016) Photoplethysmography revisited: from contact to noncontact, from point to imaging. IEEE Trans Biomed Eng 63(3):463–477PubMedCrossRef
17.
go back to reference Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28(3):R1–R39PubMedCrossRef Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28(3):R1–R39PubMedCrossRef
18.
go back to reference Agrò D, Canicattì R, Tomasino A, Giordano A, Adamo G, Parisi A, Pernice R, Stivala S, Giaconia C, Busacca AC, Ferla G (2014) PPG embedded system for blood pressure monitoring. Proc of 2014 AEIT Int Ann Conf, Trieste, Italy, pp 1–6 Agrò D, Canicattì R, Tomasino A, Giordano A, Adamo G, Parisi A, Pernice R, Stivala S, Giaconia C, Busacca AC, Ferla G (2014) PPG embedded system for blood pressure monitoring. Proc of 2014 AEIT Int Ann Conf, Trieste, Italy, pp 1–6
19.
go back to reference Oreggia D, Guarino S, Parisi A, Pernice R, Adamo G, Mistretta L, Di Buono P, Fallica G, Ferla G, Cino AC, Giaconia C, Busacca AC (2015) Physiological parameters measurements in a cardiac cycle via a combo PPG-ECG system. Proc of 2015 AEIT Int Ann Conf, Napoli, Italy, pp 1–6 Oreggia D, Guarino S, Parisi A, Pernice R, Adamo G, Mistretta L, Di Buono P, Fallica G, Ferla G, Cino AC, Giaconia C, Busacca AC (2015) Physiological parameters measurements in a cardiac cycle via a combo PPG-ECG system. Proc of 2015 AEIT Int Ann Conf, Napoli, Italy, pp 1–6
20.
go back to reference Siddiqui A, Zhang Y, Feng Z, Kos A (2016) A pulse rate estimation algorithm using PPG and smartphone camera. J Med Syst 40(5):126PubMedCrossRef Siddiqui A, Zhang Y, Feng Z, Kos A (2016) A pulse rate estimation algorithm using PPG and smartphone camera. J Med Syst 40(5):126PubMedCrossRef
21.
go back to reference Bánhalmi A, Borbás J, Fidrich M, Bilicki V, Gingl Z, Rudas L (2018) Analysis of a pulse rate variability measurement using a smartphone camera. J Healthc Eng 2018(4038034):15 Bánhalmi A, Borbás J, Fidrich M, Bilicki V, Gingl Z, Rudas L (2018) Analysis of a pulse rate variability measurement using a smartphone camera. J Healthc Eng 2018(4038034):15
22.
go back to reference Wesseling KH (1996) Finger arterial pressure measurement with Finapres. Z Kardiol 85(Suppl 3):38–44PubMed Wesseling KH (1996) Finger arterial pressure measurement with Finapres. Z Kardiol 85(Suppl 3):38–44PubMed
23.
go back to reference Imholz BPM, Wieling W, Van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38(3):605–616PubMedCrossRef Imholz BPM, Wieling W, Van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38(3):605–616PubMedCrossRef
24.
go back to reference Schäfer A, Vagedes J (2013) How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol 166(1):15–29PubMedCrossRef Schäfer A, Vagedes J (2013) How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol 166(1):15–29PubMedCrossRef
25.
26.
go back to reference Gil E, Orini M, Bailón R, Vergara JM, Mainardi L, Laguna P (2010) Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol Meas 31(9):1271–1290PubMedCrossRef Gil E, Orini M, Bailón R, Vergara JM, Mainardi L, Laguna P (2010) Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol Meas 31(9):1271–1290PubMedCrossRef
27.
go back to reference Lu G, Yang F, Taylor JA, Stein JF (2009) A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J Med Eng Technol 33(8):634–641PubMedCrossRef Lu G, Yang F, Taylor JA, Stein JF (2009) A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J Med Eng Technol 33(8):634–641PubMedCrossRef
28.
go back to reference Rauh R, Limley R, Bauer RD, Radespiel-Troger M, Mueck-Weymann M (2004) Comparison of heart rate variability and pulse rate variability detected with photoplethysmography. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings Volume 5474, Saratov Fall Meeting 2003: Optical Technologies in Biophysics and Medicine V, pp 115–126 Rauh R, Limley R, Bauer RD, Radespiel-Troger M, Mueck-Weymann M (2004) Comparison of heart rate variability and pulse rate variability detected with photoplethysmography. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings Volume 5474, Saratov Fall Meeting 2003: Optical Technologies in Biophysics and Medicine V, pp 115–126
29.
go back to reference Giardino ND, Lehrer PM, Edelberg R (2002) Comparison of finger plethysmograph to ECG in the measurement of heart rate variability. Psychophysiology 39(2):246–253PubMedCrossRef Giardino ND, Lehrer PM, Edelberg R (2002) Comparison of finger plethysmograph to ECG in the measurement of heart rate variability. Psychophysiology 39(2):246–253PubMedCrossRef
30.
go back to reference McKinley PS, Shapiro PA, Bagiella E, Myers MM, De Meersman RE, Grant I, Sloan RP (2003) Deriving heart period variability from blood pressure waveforms. J Appl Physiol 95(4):1431–1438PubMedCrossRef McKinley PS, Shapiro PA, Bagiella E, Myers MM, De Meersman RE, Grant I, Sloan RP (2003) Deriving heart period variability from blood pressure waveforms. J Appl Physiol 95(4):1431–1438PubMedCrossRef
31.
go back to reference Carrasco S, Gonzalez R, Jimenez J, Roman R, Medina V, Azpiroz J (1998) Comparison of the heart rate variability parameters obtained from the electrocardiogram and the blood pressure wave. J Med Eng Technol 22(5):195–205PubMedCrossRef Carrasco S, Gonzalez R, Jimenez J, Roman R, Medina V, Azpiroz J (1998) Comparison of the heart rate variability parameters obtained from the electrocardiogram and the blood pressure wave. J Med Eng Technol 22(5):195–205PubMedCrossRef
32.
go back to reference Dawson SL, Panerai RB, Potter JF (1998) Should one use electrocardiographic or Finapres-derived pulse intervals for calculation of cardiac baroreceptor sensitivity? Blood Press Monit 3(5):315–320PubMed Dawson SL, Panerai RB, Potter JF (1998) Should one use electrocardiographic or Finapres-derived pulse intervals for calculation of cardiac baroreceptor sensitivity? Blood Press Monit 3(5):315–320PubMed
33.
go back to reference Suhrbier A, Heringer R, Walther T, Malberg H, Wessel N (2006) Comparison of three methods for beat-to-beat-interval extraction from continuous blood pressure and electrocardiogram with respect to heart rate variability analysis. Biomed Tech (Berl) 51(2):70–76CrossRef Suhrbier A, Heringer R, Walther T, Malberg H, Wessel N (2006) Comparison of three methods for beat-to-beat-interval extraction from continuous blood pressure and electrocardiogram with respect to heart rate variability analysis. Biomed Tech (Berl) 51(2):70–76CrossRef
34.
go back to reference Lu S, Zhao H, Ju K, Shin K, Lee M, Shelley K, Chon KH (2008) Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J Clin Monit Comput 22(1):23–29PubMedCrossRef Lu S, Zhao H, Ju K, Shin K, Lee M, Shelley K, Chon KH (2008) Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J Clin Monit Comput 22(1):23–29PubMedCrossRef
35.
go back to reference Khandoker AH, Karmakar CK, Palaniswami M (2011) Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea. Med Eng Phys 33(2):204–209PubMedCrossRef Khandoker AH, Karmakar CK, Palaniswami M (2011) Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea. Med Eng Phys 33(2):204–209PubMedCrossRef
36.
go back to reference Iozzia L, Cerina L, Mainardi L (2016) Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA. Physiol Meas 37(11):1934–1944PubMedCrossRef Iozzia L, Cerina L, Mainardi L (2016) Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA. Physiol Meas 37(11):1934–1944PubMedCrossRef
37.
go back to reference Hernando D, Roca S, Sancho j AA, Bailón R (2018) Validation of the AppleWatch for heart rate variability measurements during relax and mental stress in healthy subjects. Sensors (Basel) 18(8):E2619CrossRef Hernando D, Roca S, Sancho j AA, Bailón R (2018) Validation of the AppleWatch for heart rate variability measurements during relax and mental stress in healthy subjects. Sensors (Basel) 18(8):E2619CrossRef
38.
go back to reference Pernice R, Javorka M, Krohova J, Czippelova B, Turianikova Z, Busacca A, Faes L (2018) Reliability of short-term heart rate variability indexes assessed through photoplethysmography. Proc of 40th Ann Int Conf of the IEEE engineering in medicine and biology society (EMBC 2018), Honolulu, USA, pp 5610–5613 Pernice R, Javorka M, Krohova J, Czippelova B, Turianikova Z, Busacca A, Faes L (2018) Reliability of short-term heart rate variability indexes assessed through photoplethysmography. Proc of 40th Ann Int Conf of the IEEE engineering in medicine and biology society (EMBC 2018), Honolulu, USA, pp 5610–5613
39.
go back to reference Javorka M, Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Javorka K, Faes L (2017) Basic cardiovascular variability signals: mutual directed interactions explored in the information domain. Physiol Meas 38(5):877–894PubMedCrossRef Javorka M, Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Javorka K, Faes L (2017) Basic cardiovascular variability signals: mutual directed interactions explored in the information domain. Physiol Meas 38(5):877–894PubMedCrossRef
40.
go back to reference Vollmer M (2015) A robust, simple and reliable measure of heart rate variability using relative RR intervals. Proc 2015 Computing in Cardiology Conf (CinC), Nice, France, pp 609–612 Vollmer M (2015) A robust, simple and reliable measure of heart rate variability using relative RR intervals. Proc 2015 Computing in Cardiology Conf (CinC), Nice, France, pp 609–612
41.
go back to reference Magagnin V, Bassani T, Bari V, Turiel M, Maestri R, Pinna GD, Porta A (2011) Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiol Meas 32(11):1775–1786PubMedCrossRef Magagnin V, Bassani T, Bari V, Turiel M, Maestri R, Pinna GD, Porta A (2011) Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiol Meas 32(11):1775–1786PubMedCrossRef
42.
go back to reference Dantas EM, Sant'Anna ML, Andreão RV, Gonçalves CP, Morra EA, Baldo MP, Rodrigues SL, Mill JG (2012) Spectral analysis of heart rate variability with the autoregressive method: what model order to choose? Comput Biol Med 42(2):164–170PubMedCrossRef Dantas EM, Sant'Anna ML, Andreão RV, Gonçalves CP, Morra EA, Baldo MP, Rodrigues SL, Mill JG (2012) Spectral analysis of heart rate variability with the autoregressive method: what model order to choose? Comput Biol Med 42(2):164–170PubMedCrossRef
43.
go back to reference Marple SL Jr (1987) Digital spectral analysis with applications. New Jersey: Prentice Hall, Englewood Cliffs Marple SL Jr (1987) Digital spectral analysis with applications. New Jersey: Prentice Hall, Englewood Cliffs
44.
go back to reference Baselli G, Porta A, Cerutti S (1997) Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Trans Biomed Eng 44(11):1092–1101PubMedCrossRef Baselli G, Porta A, Cerutti S (1997) Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Trans Biomed Eng 44(11):1092–1101PubMedCrossRef
45.
go back to reference McCraty R, Shaffer F (2015) Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 4(1):46–61PubMedPubMedCentralCrossRef McCraty R, Shaffer F (2015) Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 4(1):46–61PubMedPubMedCentralCrossRef
47.
go back to reference Bari V, Girardengo G, Marchi A, De Maria B, Brink PA, Crotti L, Schwartz PJ, Porta A (2015) A refined multiscale self-entropy approach for the assessment of cardiac control complexity: application to long QT syndrome type 1 patients. Entropy 17(11):7768–7785CrossRef Bari V, Girardengo G, Marchi A, De Maria B, Brink PA, Crotti L, Schwartz PJ, Porta A (2015) A refined multiscale self-entropy approach for the assessment of cardiac control complexity: application to long QT syndrome type 1 patients. Entropy 17(11):7768–7785CrossRef
48.
go back to reference Xiong W, Faes L, Ivanov PC (2017) Entropy measures, entropy estimators and their performance in quantifying complex dynamics: effects of artifacts, nonstationarity and long-range correlations. Phys Rev E 95:62114CrossRef Xiong W, Faes L, Ivanov PC (2017) Entropy measures, entropy estimators and their performance in quantifying complex dynamics: effects of artifacts, nonstationarity and long-range correlations. Phys Rev E 95:62114CrossRef
49.
go back to reference Faes L, Kugiumtzis D, Nollo G, Jurysta F, Marinazzo D (2015) Estimating the decomposition of predictive information in multivariate systems. Phys Rev E Stat Nonlinear Soft Matter Phys 91(3):032904CrossRef Faes L, Kugiumtzis D, Nollo G, Jurysta F, Marinazzo D (2015) Estimating the decomposition of predictive information in multivariate systems. Phys Rev E Stat Nonlinear Soft Matter Phys 91(3):032904CrossRef
50.
go back to reference Giavarina D (2015) Understanding Bland Altman analysis. Biochem Med (Zagreb) 25(2):141–151CrossRef Giavarina D (2015) Understanding Bland Altman analysis. Biochem Med (Zagreb) 25(2):141–151CrossRef
51.
go back to reference Chen X, Huang YY, Yun F, Chen TJ, Li J (2015) Effect of changes in sympathovagal balance on the accuracy of heart rate variability obtained from photoplethysmography. Exp Ther Med 10(6):2311–2318PubMedPubMedCentralCrossRef Chen X, Huang YY, Yun F, Chen TJ, Li J (2015) Effect of changes in sympathovagal balance on the accuracy of heart rate variability obtained from photoplethysmography. Exp Ther Med 10(6):2311–2318PubMedPubMedCentralCrossRef
52.
go back to reference Chan GS, Middleton PM, Celler BG, Wang L, Lovell NH (2007) Change in pulse transit time and pre-ejection period during head-up tilt-induced progressive central hypovolaemia. J Clin Monit Comput 21(5):283–293PubMedCrossRef Chan GS, Middleton PM, Celler BG, Wang L, Lovell NH (2007) Change in pulse transit time and pre-ejection period during head-up tilt-induced progressive central hypovolaemia. J Clin Monit Comput 21(5):283–293PubMedCrossRef
53.
go back to reference Schneider GM, Jacobs DW, Gevirtz RN, O’Connor DT (2003) Cardiovascular haemodynamic response to repeated mental stress in normotensive subjects at genetic risk of hypertension: evidence of enhanced reactivity, blunted adaptation, and delayed recovery. J Hum Hypertens 17(12):829–840PubMedCrossRef Schneider GM, Jacobs DW, Gevirtz RN, O’Connor DT (2003) Cardiovascular haemodynamic response to repeated mental stress in normotensive subjects at genetic risk of hypertension: evidence of enhanced reactivity, blunted adaptation, and delayed recovery. J Hum Hypertens 17(12):829–840PubMedCrossRef
54.
go back to reference Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Tonhajzerova I, Javorka M (2017) Preejection period as a sympathetic activity index: a role of confounding factors. Physiol Res 66(Supplementum 2):S265–S275PubMed Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Tonhajzerova I, Javorka M (2017) Preejection period as a sympathetic activity index: a role of confounding factors. Physiol Res 66(Supplementum 2):S265–S275PubMed
55.
go back to reference Proença J, Muehlsteff J, Aubert X, Carvalho P (2010) Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population? Proc of 32nd Ann Int Conf of the IEEE engineering in medicine and biology society (EMBC 2010), Buenos Aires, Argentina, pp 598–601 Proença J, Muehlsteff J, Aubert X, Carvalho P (2010) Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population? Proc of 32nd Ann Int Conf of the IEEE engineering in medicine and biology society (EMBC 2010), Buenos Aires, Argentina, pp 598–601
56.
go back to reference Naschitz JE, Bezobchuk S, Mussafia-Priselac R, Sundick S, Dreyfuss D, Khorshidi I, Karidis A, Manor H, Nagar M, Peck ER, Peck S, Storch S, Rosner I, Gaitini L (2004) Pulse transit time by R-wave-gated infrared photoplethysmography: review of the literature and personal experience. J Clin Monit Comput 18(5–6):333–342PubMedCrossRef Naschitz JE, Bezobchuk S, Mussafia-Priselac R, Sundick S, Dreyfuss D, Khorshidi I, Karidis A, Manor H, Nagar M, Peck ER, Peck S, Storch S, Rosner I, Gaitini L (2004) Pulse transit time by R-wave-gated infrared photoplethysmography: review of the literature and personal experience. J Clin Monit Comput 18(5–6):333–342PubMedCrossRef
57.
go back to reference Ma H, Zhang Y (2006) Spectral analysis of pulse transittime variability and itscoherence with other cardiovascular variabilities. Conf Proc IEEE Eng Med Biol Soc 1:6442–6445PubMedCrossRef Ma H, Zhang Y (2006) Spectral analysis of pulse transittime variability and itscoherence with other cardiovascular variabilities. Conf Proc IEEE Eng Med Biol Soc 1:6442–6445PubMedCrossRef
58.
go back to reference Foo J, Lim C (2006) Pulse transit time as an indirect marker for variations in cardiovascular related reactivity. Technol Health Care 14(2):97–108PubMedCrossRef Foo J, Lim C (2006) Pulse transit time as an indirect marker for variations in cardiovascular related reactivity. Technol Health Care 14(2):97–108PubMedCrossRef
59.
go back to reference Wang R, Jia W, Mao Z-H, Sclabassi RJ, Sun M (2014) cuff-free blood pressure estimation using pulse transit time and heart rate. Int Conf signal process proc, ZangZhou, China, pp 115–118 Wang R, Jia W, Mao Z-H, Sclabassi RJ, Sun M (2014) cuff-free blood pressure estimation using pulse transit time and heart rate. Int Conf signal process proc, ZangZhou, China, pp 115–118
60.
go back to reference Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Toreyin K, Kyal S (2015) Towards ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng 62(8):1879–1901PubMedPubMedCentralCrossRef Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Toreyin K, Kyal S (2015) Towards ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng 62(8):1879–1901PubMedPubMedCentralCrossRef
61.
go back to reference Martin SLO, Carek AM, Kim CS, Ashouri H, Inan OT, Hahn JO, Mukkamala R (2016) Weighing scale-based pulse transit time is a superior marker of blood pressure than conventional pulse arrival time. Sci Rep 6:39273PubMedPubMedCentralCrossRef Martin SLO, Carek AM, Kim CS, Ashouri H, Inan OT, Hahn JO, Mukkamala R (2016) Weighing scale-based pulse transit time is a superior marker of blood pressure than conventional pulse arrival time. Sci Rep 6:39273PubMedPubMedCentralCrossRef
62.
go back to reference Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90(4):1826–1831PubMedCrossRef Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90(4):1826–1831PubMedCrossRef
63.
64.
go back to reference Faes L, Porta A, Rossato G, Adami A, Tonon D, Corica A, Nollo G (2013) Investigating the mechanisms of cardiovascular and cerebrovascular regulation in orthostatic syncope through an information decomposition strategy. Auton Neurosci 178(1–2):76–82PubMedCrossRef Faes L, Porta A, Rossato G, Adami A, Tonon D, Corica A, Nollo G (2013) Investigating the mechanisms of cardiovascular and cerebrovascular regulation in orthostatic syncope through an information decomposition strategy. Auton Neurosci 178(1–2):76–82PubMedCrossRef
65.
go back to reference Faes L, Porta A, Nollo G, Javorka M (2017) Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks. Entropy 19(1):5CrossRef Faes L, Porta A, Nollo G, Javorka M (2017) Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks. Entropy 19(1):5CrossRef
66.
go back to reference Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ (1991) Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol Heart Circ Physiol 261(4 Pt 2):H1231–H1245CrossRef Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ (1991) Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol Heart Circ Physiol 261(4 Pt 2):H1231–H1245CrossRef
Metadata
Title
Comparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring
Authors
Riccardo Pernice
Michal Javorka
Jana Krohova
Barbora Czippelova
Zuzana Turianikova
Alessandro Busacca
Luca Faes
Member, IEEE
Publication date
07-02-2019
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 6/2019
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-01957-4

Other articles of this Issue 6/2019

Medical & Biological Engineering & Computing 6/2019 Go to the issue

Premium Partner