Skip to main content
Top

2018 | OriginalPaper | Chapter

15. Comparison of Three Different Types of Wrist Pulse Signals

Authors : David Zhang, Wangmeng Zuo, Peng Wang

Published in: Computational Pulse Signal Analysis

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

By far, a number of sensors have been employed for pulse signal acquisition, which can be grouped into three major categories, i.e., pressure, photoelectric, and ultrasonic sensors. To guide the sensor selection for computational pulse diagnosis, in this chapter, we analyze the physical meanings and sensitivities of signals acquired by these three types of sensors. The dependency and complementarity of the different sensors are discussed from both the perspective of cardiovascular fluid dynamics and comparative experiments by evaluating disease classification performance. Experimental results indicate that each sensor is more appropriate for the diagnosis of some specific disease that the changes of physiological factors can be effectively reflected by the sensor, e.g., ultrasonic sensor for diabetes and pressure sensor for arteriosclerosis, and improved diagnosis performance can be obtained by combining three types of signals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Walsh and E. King, Pulse Diagnosis: A Clinical Guide. Sydney Australia: Elsevier, 2008. S. Walsh and E. King, Pulse Diagnosis: A Clinical Guide. Sydney Australia: Elsevier, 2008.
2.
go back to reference V. D. Lad, Secrets of the Pulse. Albuquerque, New Mexico: The Ayurvedic Press, 1996. V. D. Lad, Secrets of the Pulse. Albuquerque, New Mexico: The Ayurvedic Press, 1996.
3.
go back to reference E. Hsu, Pulse Diagnosis in Early Chinese Medicine. New York, American: Cambridge University Press, 2010. E. Hsu, Pulse Diagnosis in Early Chinese Medicine. New York, American: Cambridge University Press, 2010.
4.
go back to reference R. Amber and B. Brooke, Pulse Diagnosis: Detailed Interpretations For Eastern & Western Holistic Treatments. Santa Fe, New Mexico: Aurora Press, 1993. R. Amber and B. Brooke, Pulse Diagnosis: Detailed Interpretations For Eastern & Western Holistic Treatments. Santa Fe, New Mexico: Aurora Press, 1993.
5.
go back to reference Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Wrist pulse signal diagnosis using modified Gaussian Models and Fuzzy C-Means classification,” Medical Engineering & Physics, vol. 31, pp. 1283–1289, Dec 2009.CrossRef Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Wrist pulse signal diagnosis using modified Gaussian Models and Fuzzy C-Means classification,” Medical Engineering & Physics, vol. 31, pp. 1283–1289, Dec 2009.CrossRef
6.
go back to reference Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Computerized wrist pulse signal diagnosis using modified auto-regressive models,” Journal of Medical Systems, vol. 35, pp. 321–328, Jun 2011.CrossRef Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Computerized wrist pulse signal diagnosis using modified auto-regressive models,” Journal of Medical Systems, vol. 35, pp. 321–328, Jun 2011.CrossRef
7.
go back to reference L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Combination of heterogeneous features for wrist pulse blood flow signal diagnosis via multiple kernel learning,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, pp. 599–607, Jul 2012. L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Combination of heterogeneous features for wrist pulse blood flow signal diagnosis via multiple kernel learning,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, pp. 599–607, Jul 2012.
8.
go back to reference L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Classification of wrist pulse blood flow signal using time warp edit distance,” Medical Biometrics, vol. 6165, pp. 137–144, 2010. L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Classification of wrist pulse blood flow signal using time warp edit distance,” Medical Biometrics, vol. 6165, pp. 137–144, 2010.
9.
go back to reference D. Y. Zhang, W. M. Zuo, D. Zhang, H. Z. Zhang, and N. M. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” Journal of Biomedical Science and Engineering, vol. 3, pp. 361–366, 2010.CrossRef D. Y. Zhang, W. M. Zuo, D. Zhang, H. Z. Zhang, and N. M. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” Journal of Biomedical Science and Engineering, vol. 3, pp. 361–366, 2010.CrossRef
10.
go back to reference Q. L. Guo, K. Q. Wang, D. Y. Zhang, and N. M. Li, “A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis,” in IEEE International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 2008, pp. 513–517. Q. L. Guo, K. Q. Wang, D. Y. Zhang, and N. M. Li, “A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis,” in IEEE International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 2008, pp. 513–517.
11.
go back to reference S. Charbonnier, S. Galichet, G. Mauris, and J. P. Siche, “Statistical and fuzzy models of ambulatory systolic blood pressure for hypertension diagnosis,” IEEE Transactions on Instrumentation and Measurement, vol. 49, pp. 998–1003, 2000.CrossRef S. Charbonnier, S. Galichet, G. Mauris, and J. P. Siche, “Statistical and fuzzy models of ambulatory systolic blood pressure for hypertension diagnosis,” IEEE Transactions on Instrumentation and Measurement, vol. 49, pp. 998–1003, 2000.CrossRef
12.
go back to reference H.-T. Wu, C.-H. Lee, C.-K. Sun, J.-T. Hsu, R.-M. Huang, and C.-J. Tang, “Arterial Waveforms Measured at the Wrist as Indicators of Diabetic Endothelial Dysfunction in the Elderly,” IEEE Transactions on Instrumentation and Measurement, vol. 61, pp. 162–169, 2012.CrossRef H.-T. Wu, C.-H. Lee, C.-K. Sun, J.-T. Hsu, R.-M. Huang, and C.-J. Tang, “Arterial Waveforms Measured at the Wrist as Indicators of Diabetic Endothelial Dysfunction in the Elderly,” IEEE Transactions on Instrumentation and Measurement, vol. 61, pp. 162–169, 2012.CrossRef
13.
go back to reference H. Sorvoja, V. M. Kokko, R. Myllyla, and J. Miettinen, “Use of EMFi as a blood pressure pulse transducer,” IEEE Transactions on Instrumentation and Measurement, vol. 54, pp. 2505–2512, 2005.CrossRef H. Sorvoja, V. M. Kokko, R. Myllyla, and J. Miettinen, “Use of EMFi as a blood pressure pulse transducer,” IEEE Transactions on Instrumentation and Measurement, vol. 54, pp. 2505–2512, 2005.CrossRef
14.
go back to reference E. Kaniusas, H. Pfutzner, L. Mehnen, J. Kosel, C. Tellez-Blanco, G. Varoneckas, et al., “Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG,” IEEE Sensors Journal, vol. 6, pp. 819–828, Jun 2006.CrossRef E. Kaniusas, H. Pfutzner, L. Mehnen, J. Kosel, C. Tellez-Blanco, G. Varoneckas, et al., “Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG,” IEEE Sensors Journal, vol. 6, pp. 819–828, Jun 2006.CrossRef
15.
go back to reference C. Lianyi, H. Atsumi, M. Yagihashi, F. Mizuno, H. Narita, and H. Fujimoto, “A preliminary research on analysis of pulse diagnosis,” in IEEE International Conference on Complex Medical Engineering, Beijing,China, 2007, pp. 1807–1812. C. Lianyi, H. Atsumi, M. Yagihashi, F. Mizuno, H. Narita, and H. Fujimoto, “A preliminary research on analysis of pulse diagnosis,” in IEEE International Conference on Complex Medical Engineering, Beijing,China, 2007, pp. 1807–1812.
16.
go back to reference H.-T. Wu, C.-H. Lee, and A.-B. Liu, “Assessment of endothelial function using arterial pressure signals,” Journal of Signal Processing Systems, vol. 64, pp. 223–232, 2011.CrossRef H.-T. Wu, C.-H. Lee, and A.-B. Liu, “Assessment of endothelial function using arterial pressure signals,” Journal of Signal Processing Systems, vol. 64, pp. 223–232, 2011.CrossRef
17.
go back to reference P. Renevey, R. Vetter, J. Krauss, P. Celka, and Y. Depeursinge, “Wrist-located pulse detection using IR signals, activity and nonlinear artifact cancellation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, pp. 3030–3033 vol.3. P. Renevey, R. Vetter, J. Krauss, P. Celka, and Y. Depeursinge, “Wrist-located pulse detection using IR signals, activity and nonlinear artifact cancellation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, pp. 3030–3033 vol.3.
18.
go back to reference P. Wang, W. Zuo, H. Zhang, and D. Zhang, “Design and implementation of a multi-channel pulse signal acquisition system,” in IEEE International Conference on Biomedical Engineering and Informatics, ChongQing, China, 2012, pp. 1063–1067. P. Wang, W. Zuo, H. Zhang, and D. Zhang, “Design and implementation of a multi-channel pulse signal acquisition system,” in IEEE International Conference on Biomedical Engineering and Informatics, ChongQing, China, 2012, pp. 1063–1067.
19.
go back to reference C.-S. Hu, Y.-F. Chung, C.-C. Yeh, and C.-H. Luo, “Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure Sensor Array,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, pp. 1–9, 2012. C.-S. Hu, Y.-F. Chung, C.-C. Yeh, and C.-H. Luo, “Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure Sensor Array,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, pp. 1–9, 2012.
20.
go back to reference A. Zhang and H. Wang, “Real-time detection system For photoelectric pulse signals,” in IEEE International Conference on Business Management and Electronic Information Guangzhou,China, 2011, pp. 498–501. A. Zhang and H. Wang, “Real-time detection system For photoelectric pulse signals,” in IEEE International Conference on Business Management and Electronic Information Guangzhou,China, 2011, pp. 498–501.
21.
go back to reference N. Selvaraj, K. H. Shelley, D. G. Silverman, N. Stachenfeld, N. Galante, J. P. Florian, et al., “A Novel Approach Using Time Frequency Analysis of Pulse-Oximeter Data to Detect Progressive Hypovolemia in Spontaneously Breathing Healthy Subjects,” IEEE Transactions on Biomedical Engineering, vol. 58, pp. 2272–2279, 2011.CrossRef N. Selvaraj, K. H. Shelley, D. G. Silverman, N. Stachenfeld, N. Galante, J. P. Florian, et al., “A Novel Approach Using Time Frequency Analysis of Pulse-Oximeter Data to Detect Progressive Hypovolemia in Spontaneously Breathing Healthy Subjects,” IEEE Transactions on Biomedical Engineering, vol. 58, pp. 2272–2279, 2011.CrossRef
22.
go back to reference Q. Guo, K. Wang, D. Zhang, and N. Li, “A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis,” in IEEE International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 2008, pp. 513–517. Q. Guo, K. Wang, D. Zhang, and N. Li, “A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis,” in IEEE International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 2008, pp. 513–517.
23.
go back to reference I. Wakabayashi and H. Masuda, “Association of pulse pressure with fibrinolysis in patients with type 2 diabetes,” Thrombosis Research, vol. 121, pp. 95–102, 2007.CrossRef I. Wakabayashi and H. Masuda, “Association of pulse pressure with fibrinolysis in patients with type 2 diabetes,” Thrombosis Research, vol. 121, pp. 95–102, 2007.CrossRef
24.
go back to reference N. Arunkumar and K. M. M. Sirajudeen, “Approximate entropy based ayurvedic pulse diagnosis for diabetics – a case study,” in IEEE International Conference on Trendz in Information Sciences and Computing, Chennai,India, 2011, pp. 133–135. N. Arunkumar and K. M. M. Sirajudeen, “Approximate entropy based ayurvedic pulse diagnosis for diabetics – a case study,” in IEEE International Conference on Trendz in Information Sciences and Computing, Chennai,India, 2011, pp. 133–135.
25.
go back to reference Q. Y. Lee, G. S. H. Chan, S. J. Redmond, P. M. Middleton, E. Steel, P. Malouf, et al., “Classification of low systemic vascular resistance using photoplethysmogram and routine cardiovascular measurements,” in Annual International Conference of IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 2010, pp. 1930–1933. Q. Y. Lee, G. S. H. Chan, S. J. Redmond, P. M. Middleton, E. Steel, P. Malouf, et al., “Classification of low systemic vascular resistance using photoplethysmogram and routine cardiovascular measurements,” in Annual International Conference of IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 2010, pp. 1930–1933.
26.
go back to reference R. Murata, H. Kanai, N. Chubachi, and Y. Koiwa, “Measurement of local pulse wave velocity on aorta for noninvasive diagnosis of arteriosclerosis,” in IEEE Annual International Conference of the Engineering in Medicine and Biology Society, Baltimore, MD, 1994, pp. 83–84 vol.1. R. Murata, H. Kanai, N. Chubachi, and Y. Koiwa, “Measurement of local pulse wave velocity on aorta for noninvasive diagnosis of arteriosclerosis,” in IEEE Annual International Conference of the Engineering in Medicine and Biology Society, Baltimore, MD, 1994, pp. 83–84 vol.1.
27.
go back to reference A. C. Guyton and J. E. Hall, Textbook of medical physiology. Philadelphia, Pennsylvania: Elsevier, 2006. A. C. Guyton and J. E. Hall, Textbook of medical physiology. Philadelphia, Pennsylvania: Elsevier, 2006.
28.
go back to reference ICNIRP, “ICNIRP Statement on Far Infrared Radiation Exposure,” Health Physics, vol. 91, pp. 630–645, 2006. ICNIRP, “ICNIRP Statement on Far Infrared Radiation Exposure,” Health Physics, vol. 91, pp. 630–645, 2006.
29.
go back to reference W. Schèaberle, Ultrasonography in Vascular Diagnosis: A Therapy-oriented Textbook and Atlas. Germany: Springer, 2005. W. Schèaberle, Ultrasonography in Vascular Diagnosis: A Therapy-oriented Textbook and Atlas. Germany: Springer, 2005.
30.
go back to reference G. E. Mase, Schaum’s outline of theory and problems of continuum mechanics: McGraw-Hill New York, 1970. G. E. Mase, Schaum’s outline of theory and problems of continuum mechanics: McGraw-Hill New York, 1970.
31.
go back to reference M. Kutz, Biomedical Engineering and Design Handbook: Biomedical Engineering Fundamentals. United States: McGraw-Hill Professional, 2009. M. Kutz, Biomedical Engineering and Design Handbook: Biomedical Engineering Fundamentals. United States: McGraw-Hill Professional, 2009.
32.
go back to reference J. R. Womersley, “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,” The Journal of physiology, vol. 127, pp. 553–563, 1955.CrossRef J. R. Womersley, “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,” The Journal of physiology, vol. 127, pp. 553–563, 1955.CrossRef
33.
go back to reference L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging. New Jersey: Wiley & Sons, 2012. L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging. New Jersey: Wiley & Sons, 2012.
34.
go back to reference S. M. Finkelstein, W. Feske, J. Mock, P. Carlyle, T. Rector, S. Kubo, et al., “Vascular compliance in hypertension,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, USA, 1988, pp. 241–242 vol.1. S. M. Finkelstein, W. Feske, J. Mock, P. Carlyle, T. Rector, S. Kubo, et al., “Vascular compliance in hypertension,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, USA, 1988, pp. 241–242 vol.1.
35.
go back to reference S. M. Finkelstein, G. E. McVeigh, D. E. Burns, P. F. Carlyle, and J. N. Cohn, “Arterial Vascular Compliance In Heart Failure,” in 12th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Michigan,American, 1990, pp. 548–549. S. M. Finkelstein, G. E. McVeigh, D. E. Burns, P. F. Carlyle, and J. N. Cohn, “Arterial Vascular Compliance In Heart Failure,” in 12th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Michigan,American, 1990, pp. 548–549.
36.
go back to reference J. Melo and J. I. Peters, “Low systemic vascular resistance: differential diagnosis and outcome,” Critical Care, vol. 3, pp. pp.71–77, 1999.CrossRef J. Melo and J. I. Peters, “Low systemic vascular resistance: differential diagnosis and outcome,” Critical Care, vol. 3, pp. pp.71–77, 1999.CrossRef
37.
go back to reference D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis, “Predicting human blood viscosity in silico,” Proceedings of the National Academy of Sciences, vol. 108, pp. 11772–11777, 2011.CrossRef D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis, “Predicting human blood viscosity in silico,” Proceedings of the National Academy of Sciences, vol. 108, pp. 11772–11777, 2011.CrossRef
38.
go back to reference W. A. N. Dorland, Illustrated medical dictionary: WB Saunders Company, 2011. W. A. N. Dorland, Illustrated medical dictionary: WB Saunders Company, 2011.
39.
go back to reference L. Xu, D. Zhang, and K. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Transactions on Biomedical Engineering, vol. 52, pp. 1973–1975, Nov 2005.CrossRef L. Xu, D. Zhang, and K. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Transactions on Biomedical Engineering, vol. 52, pp. 1973–1975, Nov 2005.CrossRef
40.
go back to reference L. Xu, M. Q. H. Meng, R. Liu, and K. Wang, “Robust peak detection of pulse waveform using height ratio,” in International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 2008, pp. 3856–3859. L. Xu, M. Q. H. Meng, R. Liu, and K. Wang, “Robust peak detection of pulse waveform using height ratio,” in International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 2008, pp. 3856–3859.
41.
go back to reference D. Zhang, W. Zuo, D. Zhang, H. Zhang, and N. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” Journal of Biomedical Science and Engineering, vol. 3, pp. 361–366, 2010.CrossRef D. Zhang, W. Zuo, D. Zhang, H. Zhang, and N. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” Journal of Biomedical Science and Engineering, vol. 3, pp. 361–366, 2010.CrossRef
42.
go back to reference C. Xia, Y. Li, J. Yan, Y. Wang, H. Yan, R. Guo, et al., “Wrist Pulse Waveform Feature Extraction and Dimension Reduction with Feature Variability Analysis,” in International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 2008, pp. 2048–2051. C. Xia, Y. Li, J. Yan, Y. Wang, H. Yan, R. Guo, et al., “Wrist Pulse Waveform Feature Extraction and Dimension Reduction with Feature Variability Analysis,” in International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 2008, pp. 2048–2051.
43.
go back to reference L. Xu, M. Q. H. Meng, K. Wang, W. Lu, and N. Li, “Pulse images recognition using fuzzy neural network,” Expert systems with applications, vol. 36, pp. 3805–3811, 2009.CrossRef L. Xu, M. Q. H. Meng, K. Wang, W. Lu, and N. Li, “Pulse images recognition using fuzzy neural network,” Expert systems with applications, vol. 36, pp. 3805–3811, 2009.CrossRef
44.
go back to reference Y. Wang, X. Wu, B. Liu, Y. Yi, and W. Wang, “Definition and application of indices in Doppler ultrasound sonogram,” Shanghai Journal of Biomedical Engineering, vol. 18, pp. 26–29, Aug 1997. Y. Wang, X. Wu, B. Liu, Y. Yi, and W. Wang, “Definition and application of indices in Doppler ultrasound sonogram,” Shanghai Journal of Biomedical Engineering, vol. 18, pp. 26–29, Aug 1997.
45.
go back to reference M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Physical Review E, vol. 71, pp. 1–18, Feb 2005. M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Physical Review E, vol. 71, pp. 1–18, Feb 2005.
46.
go back to reference M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of complex physiologic time series,” Physical Review Letters, vol. 89, pp. 1–4, Aug 5 2002. M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of complex physiologic time series,” Physical Review Letters, vol. 89, pp. 1–4, Aug 5 2002.
47.
go back to reference L. Liu, N. Li, W. Zuo, D. Zhang, and H. Zhang, “Multiscale sample entropy analysis of wrist pulse blood flow signal for disease diagnosis,” in Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering, NanJing China, 2012, pp. pp.475–482. L. Liu, N. Li, W. Zuo, D. Zhang, and H. Zhang, “Multiscale sample entropy analysis of wrist pulse blood flow signal for disease diagnosis,” in Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering, NanJing China, 2012, pp. pp.475–482.
48.
go back to reference L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Classification of Wrist Pulse Blood Flow Signal Using Time Warp Edit Distance,” Medical Biometrics. Springer Berlin Heidelberg, pp. pp. 137–144, 2010. L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Classification of Wrist Pulse Blood Flow Signal Using Time Warp Edit Distance,” Medical Biometrics. Springer Berlin Heidelberg, pp. pp. 137–144, 2010.
49.
go back to reference M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy, “Composite kernel learning,” Machine learning, vol. 79, pp. 73–103, 2010.MathSciNetCrossRef M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy, “Composite kernel learning,” Machine learning, vol. 79, pp. 73–103, 2010.MathSciNetCrossRef
50.
go back to reference A. G. Lalkhen and A. McCluskey, “Clinical tests: sensitivity and specificity,” Continuing Education in Anaesthesia, Critical Care & Pain, vol. 8, pp. 221–223, 2008.CrossRef A. G. Lalkhen and A. McCluskey, “Clinical tests: sensitivity and specificity,” Continuing Education in Anaesthesia, Critical Care & Pain, vol. 8, pp. 221–223, 2008.CrossRef
51.
go back to reference Q. McNemar, “Note on the sampling error of the difference between correlated proportions or percentages,” Psychometrika, vol. 12, pp. 153–157, June 1947.CrossRef Q. McNemar, “Note on the sampling error of the difference between correlated proportions or percentages,” Psychometrika, vol. 12, pp. 153–157, June 1947.CrossRef
Metadata
Title
Comparison of Three Different Types of Wrist Pulse Signals
Authors
David Zhang
Wangmeng Zuo
Peng Wang
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4044-3_15

Premium Partner