Skip to main content
Top

2024 | OriginalPaper | Chapter

Comparison of Two Search Criteria for Lattice-Based Kernel Approximation

Authors : Frances Y. Kuo, Weiwen Mo, Dirk Nuyens, Ian H. Sloan, Abirami Srikumar

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The kernel interpolant in a reproducing kernel Hilbert space is optimal in the worst-case sense among all approximations of a function using the same set of function values. In this paper, we compare two search criteria to construct lattice point sets for use in lattice-based kernel approximation. The first candidate, \({\mathcal {P}}_n^*\), is based on the power function that appears in machine learning literature. The second, \({\mathcal {S}}_n^*\), is a search criterion used for generating lattices for approximation using truncated Fourier series. We find that the empirical difference in error between the lattices constructed using \({\mathcal {P}}_n^*\) and \({\mathcal {S}}_n^*\) is marginal. The criterion \({\mathcal {S}}_n^*\) is preferred as it is computationally more efficient and has a bound with a superior convergence rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Belhadji, A., Bardenet, R., Chainais., P.: Kernel interpolation with continuous volume sampling. In: Proceedings of the 37th International Conference on Machine Learning (ICML’20). JMLR.org, Article 68, pp. 725–735 (2020) Belhadji, A., Bardenet, R., Chainais., P.: Kernel interpolation with continuous volume sampling. In: Proceedings of the 37th International Conference on Machine Learning (ICML’20). JMLR.org, Article 68, pp. 725–735 (2020)
2.
go back to reference Bartel, F., Kämmerer, L., Potts, D., Ullrich, T.: On the reconstruction of functions from values at subsampled quadrature points. Math. Comp. 93, 785–809 (2024) Bartel, F., Kämmerer, L., Potts, D., Ullrich, T.: On the reconstruction of functions from values at subsampled quadrature points. Math. Comp. 93, 785–809 (2024)
3.
go back to reference Byrenheid, G., Kämmerer, L., Ullrich, T., Volkmer, T.: Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness. Numer. Math. 136, 993–1034 (2017)MathSciNetCrossRef Byrenheid, G., Kämmerer, L., Ullrich, T., Volkmer, T.: Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness. Numer. Math. 136, 993–1034 (2017)MathSciNetCrossRef
4.
go back to reference Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Lattice algorithms for multivariate approximation in periodic spaces with general weights. In: Brenner, S.C., Shparlinski, I., Shu, C.-W., Szyld, D. (eds.) Celebrating 75 Years of Mathematics of Computation, Contemporary Mathematics, vol. 754, pp. 93–113. AMS (2020) Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Lattice algorithms for multivariate approximation in periodic spaces with general weights. In: Brenner, S.C., Shparlinski, I., Shu, C.-W., Szyld, D. (eds.) Celebrating 75 Years of Mathematics of Computation, Contemporary Mathematics, vol. 754, pp. 93–113. AMS (2020)
5.
go back to reference Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Fast CBC construction of lattice algorithms for multivariate approximation with POD and SPOD weights. Math. Comp. 90, 787–812 (2021)MathSciNetCrossRef Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Fast CBC construction of lattice algorithms for multivariate approximation with POD and SPOD weights. Math. Comp. 90, 787–812 (2021)MathSciNetCrossRef
6.
go back to reference Cools, R., Nuyens, D.: A Belgian view on lattice rules. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 3–21. Springer (2008) Cools, R., Nuyens, D.: A Belgian view on lattice rules. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 3–21. Springer (2008)
7.
go back to reference De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23, 317–330 (2005)MathSciNetCrossRef De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23, 317–330 (2005)MathSciNetCrossRef
8.
go back to reference Dick, J., Kritzer, P., Kuo. F.Y., Sloan, I.H.: Lattice-Nystrom method for Fredholm integral equations of the second kind with convolution type kernels. J. Complexity 23, 752 – 772 (2007) Dick, J., Kritzer, P., Kuo. F.Y., Sloan, I.H.: Lattice-Nystrom method for Fredholm integral equations of the second kind with convolution type kernels. J. Complexity 23, 752 – 772 (2007)
9.
go back to reference Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the Quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)MathSciNetCrossRef Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the Quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)MathSciNetCrossRef
10.
go back to reference Dolbeault, M., Krieg, D., Ullrich, M.: A sharp upper bound for sampling numbers in \(L_2\). Appl. Comput. Harmon. Anal. 63, 113–134 (2023)MathSciNetCrossRef Dolbeault, M., Krieg, D., Ullrich, M.: A sharp upper bound for sampling numbers in \(L_2\). Appl. Comput. Harmon. Anal. 63, 113–134 (2023)MathSciNetCrossRef
11.
go back to reference Gross, C., Iwen, M.A., Kämmerer, L., Volkmer, T.: A deterministic algorithm for constructing multiple rank-1 lattices of near-optimal size. Adv. Comput. Math. 47, 86 (2021)MathSciNetCrossRef Gross, C., Iwen, M.A., Kämmerer, L., Volkmer, T.: A deterministic algorithm for constructing multiple rank-1 lattices of near-optimal size. Adv. Comput. Math. 47, 86 (2021)MathSciNetCrossRef
12.
go back to reference Kaarnioja, V., Kazashi, Y., Kuo, F.Y., Nobile, F., Sloan, I.H.: Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification. Numer. Math. 150, 33–77 (2022)MathSciNetCrossRef Kaarnioja, V., Kazashi, Y., Kuo, F.Y., Nobile, F., Sloan, I.H.: Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification. Numer. Math. 150, 33–77 (2022)MathSciNetCrossRef
13.
go back to reference Kämmerer, L., Volkmer, T.: Approximation of multivariate periodic functions based on sampling along multiple rank-1 lattices. J. Approx. Theory 246, 1–27 (2019)MathSciNetCrossRef Kämmerer, L., Volkmer, T.: Approximation of multivariate periodic functions based on sampling along multiple rank-1 lattices. J. Approx. Theory 246, 1–27 (2019)MathSciNetCrossRef
15.
go back to reference Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation: Part II. J. Complexity 66, 101569 (2021)CrossRef Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation: Part II. J. Complexity 66, 101569 (2021)CrossRef
17.
go back to reference Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rules for multivariate approximation in the worst case setting. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 289–330. Springer (2006) Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rules for multivariate approximation in the worst case setting. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 289–330. Springer (2006)
18.
go back to reference L’Ecuyer, P., Munger, D.: On figures of merit for randomly shifted lattice rules. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 133–159. Springer (2012) L’Ecuyer, P., Munger, D.: On figures of merit for randomly shifted lattice rules. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 133–159. Springer (2012)
19.
go back to reference Nuyens, D.: The construction of good lattice rules and polynomial lattice rules. In: Kritzer, P., Niederreiter, H., Pillichshammer, F., Winterhof, A. (eds.) Uniform Distribution and Quasi-Monte Carlo Methods. Radon Series on Computational and Applied Mathematics, vol. 15, pp. 223–256. De Gruyter (2014) Nuyens, D.: The construction of good lattice rules and polynomial lattice rules. In: Kritzer, P., Niederreiter, H., Pillichshammer, F., Winterhof, A. (eds.) Uniform Distribution and Quasi-Monte Carlo Methods. Radon Series on Computational and Applied Mathematics, vol. 15, pp. 223–256. De Gruyter (2014)
20.
go back to reference Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75, 903–920 (2006)MathSciNetCrossRef Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75, 903–920 (2006)MathSciNetCrossRef
21.
go back to reference Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complexity 22, 4–28 (2006)MathSciNetCrossRef Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complexity 22, 4–28 (2006)MathSciNetCrossRef
22.
go back to reference Novak, E., Sloan, I.H., Woźniakowski, H.: Tractability of approximation for weighted Korobov spaces on classical and quantum computers. Found. Comput. Math. 4, 121–156 (2004)MathSciNetCrossRef Novak, E., Sloan, I.H., Woźniakowski, H.: Tractability of approximation for weighted Korobov spaces on classical and quantum computers. Found. Comput. Math. 4, 121–156 (2004)MathSciNetCrossRef
24.
go back to reference Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)CrossRef Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)CrossRef
25.
go back to reference Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)MathSciNetCrossRef Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)MathSciNetCrossRef
26.
go back to reference Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numer. 15, 543–639 (2006)MathSciNetCrossRef Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numer. 15, 543–639 (2006)MathSciNetCrossRef
27.
go back to reference Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)MathSciNetCrossRef Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)MathSciNetCrossRef
28.
go back to reference Zeng, X.Y., Kritzer, P., Hickernell, F.J.: Spline methods using integration lattices and digital nets. Constr. Approx. 30, 529–555 (2009)MathSciNetCrossRef Zeng, X.Y., Kritzer, P., Hickernell, F.J.: Spline methods using integration lattices and digital nets. Constr. Approx. 30, 529–555 (2009)MathSciNetCrossRef
29.
go back to reference Zeng, X.Y., Leung, K.T., Hickernell, F.J.: Error analysis of splines for periodic problems using lattice designs. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 501–514. Springer (2006) Zeng, X.Y., Leung, K.T., Hickernell, F.J.: Error analysis of splines for periodic problems using lattice designs. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 501–514. Springer (2006)
Metadata
Title
Comparison of Two Search Criteria for Lattice-Based Kernel Approximation
Authors
Frances Y. Kuo
Weiwen Mo
Dirk Nuyens
Ian H. Sloan
Abirami Srikumar
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_20

Premium Partner