Skip to main content
Top

2020 | OriginalPaper | Chapter

15. Compartmental Population Balances by Means of Monte Carlo Methods

Authors : Gregor Kotalczyk, Frank Einar Kruis

Published in: Dynamic Flowsheet Simulation of Solids Processes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stochastic simulation techniques for the solution of a network of population balance equations (PBE) are discussed in this chapter. The application of weighted Monte Carlo (MC) particles for the solution of compartmental PBE systems is summarized and its computational efficacy in form of a parallel GPU implementation is pointed out. Solution strategies for coagulation, nucleation, breakage, growth and evaporation are thereby presented. An application example treats the simultaneous coagulation, nucleation, evaporation and growth encountered during particle production through the aerosol route. Furthermore, the simulation of a compartmental network is discussed and parallel simulation techniques for the transport of weighted MC particles are presented. The proposed methodology is benchmarked by comparison with a pivot method for a variety of test cases with an increasing degree of complexity. Simulation conditions are identified, for which conventional, non-weighted MC simulation techniques are not applicable. It is found, that the specific combination of a screen unit with tear-streams cannot be simulated by conventional methods, termed ‘random removal’, and make thus other techniques—like the here introduced merging techniques necessary.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
A constant nucleation rate \(R_{N}\) is assumed, so that newly introduced simulation entries have the weight \(W_{0} = R_{N} \cdot \Delta \tau_{MC}\) and a predefined diameter \(d_{0}\). For the simulation has been set: \(R_{N} = 10^{14} \,\frac{1}{{{\text{m}}^{3}\,{\text{s}}}}\), \(d_{0} = 3\,{\text{nm}}\). A monodisperse population with an initial concentration of \(10^{17} \,\frac{1}{{{\text{m}}^{3} }}\) has been used as start condition, the initial MC particles are equally weighted. The temperature was set to 300 K and the particle density to \(1\,\frac{\text{g}}{{{\text{cm}}^{3} }}\). The simulated time was ca. 25.8 s, which is 500 times the characteristic time needed to reach the self-preserving distribution [28] due to coagulation.
 
2
Special modeling is necessary in order to capture the changes of the ‘book kept’ entries due to other non-coagulation processes—this might or might not be possible, depending on the specific process being modelled. Additionally, the tracking of the changes might prove more expensive than the application of the time-driven MC methods without book-keeping.
 
3
In order to use the GPU efficiently, larger particle numbers (like e.g. 10000) have to be divided into data blocks consisting of e.g. 512 particle numbers. In the here presented implementation, particle numbers that are multiples of 512 are considered.
 
4
The four case studies comprise: (1) a flowsheet without recycle stream and screen units, (2) a flowsheet with one recycle stream and without sieve unit, (3) a flowsheet with one sieve unit and without recycle stream and (4) a flowsheet with a recycle stream and a sieve unit.
 
Literature
1.
go back to reference Ramkrishna, D.: In: Population Balances: Theory and Applications to Particulate Systems in Engineering, 1st edn., Academic (2000). ISBN 978–0-12-576970-9 Ramkrishna, D.: In: Population Balances: Theory and Applications to Particulate Systems in Engineering, 1st edn., Academic (2000). ISBN 978–0-12-576970-9
2.
go back to reference Ramkrishna, D., Singh, M.R.: Population balance modeling: current status and future prospects. Ann. Rev. Chem. Biomol. Eng. 5, 123–146 (2014) Ramkrishna, D., Singh, M.R.: Population balance modeling: current status and future prospects. Ann. Rev. Chem. Biomol. Eng. 5, 123–146 (2014)
3.
go back to reference Schwarzer, H.-C., Peukert, W.: Combined experimental/numerical study on the precipitation of nanoparticles. AIChE J. 50(12), 3234–3247 (2004) Schwarzer, H.-C., Peukert, W.: Combined experimental/numerical study on the precipitation of nanoparticles. AIChE J. 50(12), 3234–3247 (2004)
4.
go back to reference Sommer, M., Stenger, F., Peukert, W., Wagner, N.J.: Agglomeration and breakage of nanoparticles in stirred media mills−a comparison of different methods and models. Chem. Eng. Sci. 61(1), 135–148 (2006) Sommer, M., Stenger, F., Peukert, W., Wagner, N.J.: Agglomeration and breakage of nanoparticles in stirred media mills−a comparison of different methods and models. Chem. Eng. Sci. 61(1), 135–148 (2006)
5.
go back to reference Peglow, M., Kumar, J., Heinrich, S., Warnecke, G., Tsotsas, E., Mörl, L., et al.: A generic population balance model for simultaneous agglomeration and drying in fluidized beds. Chem. Eng. Sci. 62(1–2), 513–532 (2007) Peglow, M., Kumar, J., Heinrich, S., Warnecke, G., Tsotsas, E., Mörl, L., et al.: A generic population balance model for simultaneous agglomeration and drying in fluidized beds. Chem. Eng. Sci. 62(1–2), 513–532 (2007)
6.
go back to reference Kraft, M.: Modelling of particulate processes. KONA Powder Particle J. 23, 18–35 (2005) Kraft, M.: Modelling of particulate processes. KONA Powder Particle J. 23, 18–35 (2005)
7.
go back to reference Kiparissides, C.: Challenges in particulate polymerization reactor modeling and optimization: a population balance perspective. J. Process. Control. 16(3), 205–224 (2006) Kiparissides, C.: Challenges in particulate polymerization reactor modeling and optimization: a population balance perspective. J. Process. Control. 16(3), 205–224 (2006)
8.
go back to reference Bhole, M.R., Joshi, J.B., Ramkrishna, D.: CFD simulation of bubble columns incorporating population balance modeling. Chem. Eng. Sci. 63(8), 2267–2282 (2008) Bhole, M.R., Joshi, J.B., Ramkrishna, D.: CFD simulation of bubble columns incorporating population balance modeling. Chem. Eng. Sci. 63(8), 2267–2282 (2008)
9.
go back to reference Schütz, S., Gorbach, G., Piesche, M.: Modeling fluid behavior and droplet interactions during liquid–liquid separation in hydrocyclones. Chem. Eng. Sci. 64(18), 3935–3952 (2009) Schütz, S., Gorbach, G., Piesche, M.: Modeling fluid behavior and droplet interactions during liquid–liquid separation in hydrocyclones. Chem. Eng. Sci. 64(18), 3935–3952 (2009)
10.
go back to reference Sanyal, J., Marchisio, D.L., Fox, R.O., Dhanasekharan, K.: On the comparison between population balance models for CFD simulation of bubble columns. Ind. Eng. Chem. Res. 44(14), 5063–5072 (2005) Sanyal, J., Marchisio, D.L., Fox, R.O., Dhanasekharan, K.: On the comparison between population balance models for CFD simulation of bubble columns. Ind. Eng. Chem. Res. 44(14), 5063–5072 (2005)
11.
go back to reference Cheng, J., Yang, C., Jiang, M., Li, Q., Mao, Z.-S.: Simulation of antisolvent crystallization in impinging jets with coupled multiphase flow-micromixing-PBE. Chem. Eng. Sci. 171, 500–512 (2017) Cheng, J., Yang, C., Jiang, M., Li, Q., Mao, Z.-S.: Simulation of antisolvent crystallization in impinging jets with coupled multiphase flow-micromixing-PBE. Chem. Eng. Sci. 171, 500–512 (2017)
12.
go back to reference Marchisio, D.L., Fox, R.O.: Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36(1), 43–73 (2005) Marchisio, D.L., Fox, R.O.: Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36(1), 43–73 (2005)
13.
go back to reference Gavi, E., Marchisio, D.L., Barresi, A.A.: CFD modelling and scale-up of Confined Impinging Jet Reactors. Chem. Eng. Sci. 62(8), 2228–2241 (2007) Gavi, E., Marchisio, D.L., Barresi, A.A.: CFD modelling and scale-up of Confined Impinging Jet Reactors. Chem. Eng. Sci. 62(8), 2228–2241 (2007)
14.
go back to reference Boje, A., Akroyd, J., Sutcliffe, S., Edwards, J., Kraft, M.: Detailed population balance modelling of TiO2 synthesis in an industrial reactor. Chem. Eng. Sci. 164, 219–231 (2017) Boje, A., Akroyd, J., Sutcliffe, S., Edwards, J., Kraft, M.: Detailed population balance modelling of TiO2 synthesis in an industrial reactor. Chem. Eng. Sci. 164, 219–231 (2017)
15.
go back to reference Szilágyi, B., Nagy, Z.K.: Population balance modeling and optimization of an integrated batch crystallizer-wet mill system for crystal size distribution control. Cryst. Growth Des. 18(3), 1415–1424 (2018) Szilágyi, B., Nagy, Z.K.: Population balance modeling and optimization of an integrated batch crystallizer-wet mill system for crystal size distribution control. Cryst. Growth Des. 18(3), 1415–1424 (2018)
16.
go back to reference Hao, X., Zhao, H., Xu, Z., Zheng, C.: Population balance-Monte Carlo simulation for gas-to-particle synthesis of nanoparticles. Aerosol Sci. Technol. 47(10), 1125–1133 (2013) Hao, X., Zhao, H., Xu, Z., Zheng, C.: Population balance-Monte Carlo simulation for gas-to-particle synthesis of nanoparticles. Aerosol Sci. Technol. 47(10), 1125–1133 (2013)
17.
go back to reference Irizarry, R.: Stochastic simulation of population balance models with disparate time scales: hybrid strategies. Chem. Eng. Sci. 66(18), 4059–4069 (2011) Irizarry, R.: Stochastic simulation of population balance models with disparate time scales: hybrid strategies. Chem. Eng. Sci. 66(18), 4059–4069 (2011)
18.
go back to reference Dosta, M., Heinrich, S., Werther, J.: Fluidized bed spray granulation: analysis of the system behaviour by means of dynamic flowsheet simulation. Powder Technol. 204(1), 71–82 (2010) Dosta, M., Heinrich, S., Werther, J.: Fluidized bed spray granulation: analysis of the system behaviour by means of dynamic flowsheet simulation. Powder Technol. 204(1), 71–82 (2010)
19.
go back to reference Skorych, V., Dosta, M., Hartge, E.-U., Heinrich, S.: Novel system for dynamic flowsheet simulation of solids processes. Powder Technol. 314, 665–679 (2017) Skorych, V., Dosta, M., Hartge, E.-U., Heinrich, S.: Novel system for dynamic flowsheet simulation of solids processes. Powder Technol. 314, 665–679 (2017)
20.
go back to reference Menz, W.J., Akroyd, J., Kraft, M.: Stochastic solution of population balance equations for reactor networks. J. Comput. Phys. 256, 615–629 (2014) Menz, W.J., Akroyd, J., Kraft, M.: Stochastic solution of population balance equations for reactor networks. J. Comput. Phys. 256, 615–629 (2014)
21.
go back to reference Kruis, F.E., Wei, J., van der Zwaag, T., Haep, S.: Computational fluid dynamics based stochastic aerosol modeling: combination of a cell-based weighted random walk method and a constant-number Monte-Carlo method for aerosol dynamics. Chem. Eng. Sci. 70, 109–120 (2012) Kruis, F.E., Wei, J., van der Zwaag, T., Haep, S.: Computational fluid dynamics based stochastic aerosol modeling: combination of a cell-based weighted random walk method and a constant-number Monte-Carlo method for aerosol dynamics. Chem. Eng. Sci. 70, 109–120 (2012)
22.
go back to reference Zhao, H., Kruis, F.E., Zheng, C.: Reducing statistical noise and extending the size spectrum by applying weighted simulation particles in Monte Carlo simulation of coagulation. Aerosol Sci. Technol. 43(8), 781–793 (2009) Zhao, H., Kruis, F.E., Zheng, C.: Reducing statistical noise and extending the size spectrum by applying weighted simulation particles in Monte Carlo simulation of coagulation. Aerosol Sci. Technol. 43(8), 781–793 (2009)
23.
go back to reference Kotalczyk, G., Kruis, F.E.: A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging. J. Comput. Phys. 340, 276–296 (2017) Kotalczyk, G., Kruis, F.E.: A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging. J. Comput. Phys. 340, 276–296 (2017)
24.
go back to reference Lin, Y., Lee, K., Matsoukas, T.: Solution of the population balance equation using constant-number Monte Carlo. Chem. Eng. Sci. 57(12), 2241–2252 (2002) Lin, Y., Lee, K., Matsoukas, T.: Solution of the population balance equation using constant-number Monte Carlo. Chem. Eng. Sci. 57(12), 2241–2252 (2002)
25.
go back to reference Wei, J.: A fast Monte Carlo method based on an acceptance-rejection scheme for particle coagulation. Aerosol Air Quality Research 13(4), 1273–1281 (2013) Wei, J.: A fast Monte Carlo method based on an acceptance-rejection scheme for particle coagulation. Aerosol Air Quality Research 13(4), 1273–1281 (2013)
26.
go back to reference Kotalczyk, G., Skenderovic, I., Kruis, F.E.: Modeling of particle formation in arc discharges by Monte-Carlo based population balance modeling. MRS. Adv. 148, 1–8 (2017) Kotalczyk, G., Skenderovic, I., Kruis, F.E.: Modeling of particle formation in arc discharges by Monte-Carlo based population balance modeling. MRS. Adv. 148, 1–8 (2017)
27.
go back to reference Kotalczyk, G., Skenderovic, I., Kruis, F.E.: Monte Carlo simulations of homogeneous nucleation and particle growth in the presence of background particles. Tellus, Ser. B. Chem. Phys. Meteorol. 71(1), 1–10 (2019) Kotalczyk, G., Skenderovic, I., Kruis, F.E.: Monte Carlo simulations of homogeneous nucleation and particle growth in the presence of background particles. Tellus, Ser. B. Chem. Phys. Meteorol. 71(1), 1–10 (2019)
28.
go back to reference Vemury, S., Pratsinis, S.E.: Self-preserving size distributions of agglomerates. J. Aerosol Sci. 26(2), 175–185 (1995) Vemury, S., Pratsinis, S.E.: Self-preserving size distributions of agglomerates. J. Aerosol Sci. 26(2), 175–185 (1995)
29.
go back to reference Kodas, T.T., Hampden-Smith, M.J.: Aerosol Processing of Materials, Wiley-VCH (1999). ISBN 0471246697 Kodas, T.T., Hampden-Smith, M.J.: Aerosol Processing of Materials, Wiley-VCH (1999). ISBN 0471246697
30.
go back to reference Kotalczyk, G., Skenderovic, I., Kruis, F.E.: A GPU-based Monte Carlo technique for the simulation of simultaneous nucleation, coagulation and growth based on weighted simulation particles. In: AIChE Annual Meeting, pp. 490–497 (2016) Kotalczyk, G., Skenderovic, I., Kruis, F.E.: A GPU-based Monte Carlo technique for the simulation of simultaneous nucleation, coagulation and growth based on weighted simulation particles. In: AIChE Annual Meeting, pp. 490–497 (2016)
31.
go back to reference Press, W.H.: In: Numerical recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press (2007). ISBN 978-0521880688 Press, W.H.: In: Numerical recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press (2007). ISBN 978-0521880688
32.
go back to reference Tsang, T.H., Rao, A.: Comparison of different numerical schemes for condensational growth of aerosols. Aerosol Sci. Technol. 9(3), 271–277 (1988) Tsang, T.H., Rao, A.: Comparison of different numerical schemes for condensational growth of aerosols. Aerosol Sci. Technol. 9(3), 271–277 (1988)
33.
go back to reference Wu, C.-Y., Biswas, P.: Study of numerical diffusion in a discrete-sectional model and its application to aerosol dynamics simulation. Aerosol Sci. Technol. 29(5), 359–378 (1998) Wu, C.-Y., Biswas, P.: Study of numerical diffusion in a discrete-sectional model and its application to aerosol dynamics simulation. Aerosol Sci. Technol. 29(5), 359–378 (1998)
34.
go back to reference Kumar, S., Ramkrishna, D.: On the solution of population balance equations by discretization – III. Nucleation, growth and aggregation of particles. Chem. Eng. Sci. 52(24), 4659–4679 (1997) Kumar, S., Ramkrishna, D.: On the solution of population balance equations by discretization – III. Nucleation, growth and aggregation of particles. Chem. Eng. Sci. 52(24), 4659–4679 (1997)
35.
go back to reference Wyslouzil, B.E., Wölk, J.: Overview: homogeneous nucleation from the vapor phase−the experimental science. J. Chem. Phys. 145(21) (2016) Wyslouzil, B.E., Wölk, J.: Overview: homogeneous nucleation from the vapor phase−the experimental science. J. Chem. Phys. 145(21) (2016)
36.
go back to reference Girshick, S.L., Chiu, C.-P.: Kinetic nucleation theory: a new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J. Chem. Phys. 93(2), 1273–1277 (1990) Girshick, S.L., Chiu, C.-P.: Kinetic nucleation theory: a new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J. Chem. Phys. 93(2), 1273–1277 (1990)
37.
go back to reference Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 85th edn. CRC Press, Boca Raton (2004) Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 85th edn. CRC Press, Boca Raton (2004)
38.
go back to reference Egry, I., Ricci, E., Novakovic, R., Ozawa, S.: Surface tension of liquid metals and alloys-recent developments. Adv. Coll. Interface. Sci. 159(2), 198–212 (2010) Egry, I., Ricci, E., Novakovic, R., Ozawa, S.: Surface tension of liquid metals and alloys-recent developments. Adv. Coll. Interface. Sci. 159(2), 198–212 (2010)
39.
go back to reference Mishra, B.K.: Monte Carlo simulation of particle breakage process during grinding. Powder Technol. 110(3), 246–252 (2000) Mishra, B.K.: Monte Carlo simulation of particle breakage process during grinding. Powder Technol. 110(3), 246–252 (2000)
40.
go back to reference Lee, K., Matsoukas, T.: Simultaneous coagulation and break-up using constant-N Monte Carlo. Powder Technol. 110(1–2), 82–89 (2000) Lee, K., Matsoukas, T.: Simultaneous coagulation and break-up using constant-N Monte Carlo. Powder Technol. 110(1–2), 82–89 (2000)
41.
go back to reference Lee, K.F., Patterson, R.I.A., Wagner, W., Kraft, M.: Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity. J. Comput. Phys. 303, 1–18 (2015) Lee, K.F., Patterson, R.I.A., Wagner, W., Kraft, M.: Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity. J. Comput. Phys. 303, 1–18 (2015)
42.
go back to reference Zhao, H., Zheng, C., Xu, M.: Multi-Monte Carlo approach for general dynamic equation considering simultaneous particle coagulation and breakage. Powder Technol. 154(2–3), 164–178 (2005) Zhao, H., Zheng, C., Xu, M.: Multi-Monte Carlo approach for general dynamic equation considering simultaneous particle coagulation and breakage. Powder Technol. 154(2–3), 164–178 (2005)
43.
go back to reference Kotalczyk, G., Devi, J., Kruis, F.E.: A time-driven constant-number Monte Carlo method for the GPU-simulation of particle breakage based on weighted simulation particles. Powder Technol. 317, 417–429 (2017) Kotalczyk, G., Devi, J., Kruis, F.E.: A time-driven constant-number Monte Carlo method for the GPU-simulation of particle breakage based on weighted simulation particles. Powder Technol. 317, 417–429 (2017)
44.
go back to reference Devi, J., Kotalczyk, G., Kruis, F.E.: Accuracy control in Monte Carlo simulations of particle breakage. Int. J. Model. Ident. Control 31(3), 278–291 (2019) Devi, J., Kotalczyk, G., Kruis, F.E.: Accuracy control in Monte Carlo simulations of particle breakage. Int. J. Model. Ident. Control 31(3), 278–291 (2019)
45.
go back to reference Muscato, O., Di Stefano, V., Wagner, W.: A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation. Comput. Math Appl. 65(3), 520–527 (2013) Muscato, O., Di Stefano, V., Wagner, W.: A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation. Comput. Math Appl. 65(3), 520–527 (2013)
46.
go back to reference Ziff, R.M., McGrady, E.D.: The kinetics of cluster fragmentation and depolymerisation. J. Phys. A: Math. Gen. 18(15), 3027–3037 (1985) Ziff, R.M., McGrady, E.D.: The kinetics of cluster fragmentation and depolymerisation. J. Phys. A: Math. Gen. 18(15), 3027–3037 (1985)
47.
go back to reference Celnik, M., Patterson, R.I.A., Kraft, M., Wagner, W.: Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting. Combust. Flame 148(3), 158–176 (2007) Celnik, M., Patterson, R.I.A., Kraft, M., Wagner, W.: Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting. Combust. Flame 148(3), 158–176 (2007)
48.
go back to reference Liffman, K.: A direct simulation Monte-Carlo method for cluster coagulation. J. Comput. Phys. 100(1), 116–127 (1992) Liffman, K.: A direct simulation Monte-Carlo method for cluster coagulation. J. Comput. Phys. 100(1), 116–127 (1992)
49.
go back to reference Zhao, H., Maisels, A., Matsoukas, T., Zheng, C.: Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems. Powder Technol. 173(1), 38–50 (2007) Zhao, H., Maisels, A., Matsoukas, T., Zheng, C.: Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems. Powder Technol. 173(1), 38–50 (2007)
50.
go back to reference Wei, J.: A parallel Monte Carlo method for population balance modeling of particulate processes using bookkeeping strategy. Physica A 402, 186–197 (2014) Wei, J.: A parallel Monte Carlo method for population balance modeling of particulate processes using bookkeeping strategy. Physica A 402, 186–197 (2014)
51.
go back to reference Kotalczyk, G., Kruis, F.E.: Fractional Monte Carlo time steps for the simulation of coagulation for parallelized flowsheet simulations. Chem. Eng. Res. Des. 136, 71–82 (2018) Kotalczyk, G., Kruis, F.E.: Fractional Monte Carlo time steps for the simulation of coagulation for parallelized flowsheet simulations. Chem. Eng. Res. Des. 136, 71–82 (2018)
52.
go back to reference Gelbard, F., Tambour, Y., Seinfeld, J.H.: Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci. 76(2), 541–556 (1980) Gelbard, F., Tambour, Y., Seinfeld, J.H.: Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci. 76(2), 541–556 (1980)
53.
go back to reference Landgrebe, J.D., Pratsinis, S.E.: A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime. J. Colloid Interface Sci. 139(1), 63–86 (1990) Landgrebe, J.D., Pratsinis, S.E.: A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime. J. Colloid Interface Sci. 139(1), 63–86 (1990)
54.
go back to reference Marshall, C.L., Rajniak, P., Matsoukas, T.: Multi-component population balance modeling of granulation with continuous addition of binder. Powder. Technol. 236, 211–220 (2013) Marshall, C.L., Rajniak, P., Matsoukas, T.: Multi-component population balance modeling of granulation with continuous addition of binder. Powder. Technol. 236, 211–220 (2013)
55.
go back to reference Khalili, S., Lin, Y., Armaou, A., Matsoukas, T.: Constant number Monte Carlo simulation of population balances with multiple growth mechanisms. AIChE J. 56(12), 3137–3145 (2010) Khalili, S., Lin, Y., Armaou, A., Matsoukas, T.: Constant number Monte Carlo simulation of population balances with multiple growth mechanisms. AIChE J. 56(12), 3137–3145 (2010)
56.
go back to reference Smith, M., Matsoukas, T.: Constant-number Monte Carlo simulation of population balances. Chem. Eng. Sci. 53(9), 1777–1786 (1998) Smith, M., Matsoukas, T.: Constant-number Monte Carlo simulation of population balances. Chem. Eng. Sci. 53(9), 1777–1786 (1998)
57.
go back to reference Kotalczyk, G., Lambach, K., Kruis, F.E.: Parallel GPU-based monte carlo techniques for the flow-sheet simulation of solid processes. In: 8th World Congress on Particle Technology (2018)−Applications of Solids Processing Unit Operations, pp. 64–71 Kotalczyk, G., Lambach, K., Kruis, F.E.: Parallel GPU-based monte carlo techniques for the flow-sheet simulation of solid processes. In: 8th World Congress on Particle Technology (2018)−Applications of Solids Processing Unit Operations, pp. 64–71
58.
go back to reference Kumar, S., Ramkrishna, D.: On the solution of population balance equations by discretization –I. A fixed pivot technique. Chem. Eng. Sci. 51(8), 1311–1332 (1996) Kumar, S., Ramkrishna, D.: On the solution of population balance equations by discretization –I. A fixed pivot technique. Chem. Eng. Sci. 51(8), 1311–1332 (1996)
Metadata
Title
Compartmental Population Balances by Means of Monte Carlo Methods
Authors
Gregor Kotalczyk
Frank Einar Kruis
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-45168-4_15