Skip to main content
Top

2019 | OriginalPaper | Chapter

39. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

Authors : Wei Zhang, Yanfei Gao, Tai-Gang Nieh

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the applied stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Coble RLA. Model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys. 1963;34:1679–82.CrossRef Coble RLA. Model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys. 1963;34:1679–82.CrossRef
2.
go back to reference Herring C. Diffusion viscosity of a polycrystalline solids. J Appl Phys. 1950;21:437–45.CrossRef Herring C. Diffusion viscosity of a polycrystalline solids. J Appl Phys. 1950;21:437–45.CrossRef
3.
go back to reference Nabarro FRN. Steady state diffusional creep. Philos Mag A. 1967;16:231–7.CrossRef Nabarro FRN. Steady state diffusional creep. Philos Mag A. 1967;16:231–7.CrossRef
4.
go back to reference Cai B, Kong QP, Lu L, Low LK. Temperature creep of nanocrystalline pure copper. Mater Sci Eng A. 2000;286:188–92.CrossRef Cai B, Kong QP, Lu L, Low LK. Temperature creep of nanocrystalline pure copper. Mater Sci Eng A. 2000;286:188–92.CrossRef
5.
go back to reference Cai B, Kong QP, Cui P, Lu L, Creep LK. Behavior of cold-rolled nanocrystalline pure copper. Scr Mater. 2001;45:1407–13.CrossRef Cai B, Kong QP, Cui P, Lu L, Creep LK. Behavior of cold-rolled nanocrystalline pure copper. Scr Mater. 2001;45:1407–13.CrossRef
6.
go back to reference Millet PC, Desai T, Yamakov V, Wolf D. Atomistic simulations of diffusional creep in nanocrystalline bogy-centered cubic material. Acta Mater. 2008;56:3688–98.CrossRef Millet PC, Desai T, Yamakov V, Wolf D. Atomistic simulations of diffusional creep in nanocrystalline bogy-centered cubic material. Acta Mater. 2008;56:3688–98.CrossRef
7.
go back to reference Wei YJ, Bower AF, Gao HJ. Recoverable creep deformation due to heterogeneous grain-boundary diffusion and sliding. Scr Mater. 2007;57:933–6.CrossRef Wei YJ, Bower AF, Gao HJ. Recoverable creep deformation due to heterogeneous grain-boundary diffusion and sliding. Scr Mater. 2007;57:933–6.CrossRef
8.
go back to reference Cao ZH, Wang L, Hu K, Huang YL, Meng XK. Microstructural evolution and its influence on creep and stress relaxation in nanocrystalline Ni. Acta Mater. 2012;60:6742–54.CrossRef Cao ZH, Wang L, Hu K, Huang YL, Meng XK. Microstructural evolution and its influence on creep and stress relaxation in nanocrystalline Ni. Acta Mater. 2012;60:6742–54.CrossRef
9.
go back to reference Hasnaoui A, Derlet PM, Van Swygenhoven H. Interaction between dislocations and grain boundaries under an indenter – a molecular dynamics simulation. Acta Mater. 2004;52:2251–8.CrossRef Hasnaoui A, Derlet PM, Van Swygenhoven H. Interaction between dislocations and grain boundaries under an indenter – a molecular dynamics simulation. Acta Mater. 2004;52:2251–8.CrossRef
10.
go back to reference Wang YJ, Ishii A, Ogata S. Transition of creep mechanism in nanocrystalline metals. Phys Rev B. 2011;84:224102.CrossRef Wang YJ, Ishii A, Ogata S. Transition of creep mechanism in nanocrystalline metals. Phys Rev B. 2011;84:224102.CrossRef
11.
go back to reference Wang YJ, Ishii A, Ogata S. Grain size dependence of creep in nanocrystalline copper by molecular dynamics. Mater Trans. 2012;53:156–60.CrossRef Wang YJ, Ishii A, Ogata S. Grain size dependence of creep in nanocrystalline copper by molecular dynamics. Mater Trans. 2012;53:156–60.CrossRef
12.
13.
go back to reference Hall EO. The deformation and ageing of mild steel. 3. Discussion of results. Proc Phys Soc London Sect B. 1951;64:747–53.CrossRef Hall EO. The deformation and ageing of mild steel. 3. Discussion of results. Proc Phys Soc London Sect B. 1951;64:747–53.CrossRef
14.
go back to reference Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst Jpn. 1953;174:25–8. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst Jpn. 1953;174:25–8.
15.
go back to reference Chokshi AH, Rosen A, Karch J, Gleiter H. On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr Mater. 1989;23:1679–84. Chokshi AH, Rosen A, Karch J, Gleiter H. On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr Mater. 1989;23:1679–84.
16.
go back to reference Masumura RA, Hazzledine PM, Pande CS. Yield strength of fine grained materials. Acta Mater. 1998;46:4527–34.CrossRef Masumura RA, Hazzledine PM, Pande CS. Yield strength of fine grained materials. Acta Mater. 1998;46:4527–34.CrossRef
17.
go back to reference Nieh TG, Wadsworth J. Hall-Petch relation in nanocrystalline solids. Scr Metall Mater. 1991;25:955–8.CrossRef Nieh TG, Wadsworth J. Hall-Petch relation in nanocrystalline solids. Scr Metall Mater. 1991;25:955–8.CrossRef
18.
go back to reference Pande CS, Cooper KP. Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog Mater Sci. 2009;54:689–706.CrossRef Pande CS, Cooper KP. Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog Mater Sci. 2009;54:689–706.CrossRef
19.
go back to reference Trelewicz JR, Schuh CA. The Hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 2007;55:5948–58.CrossRef Trelewicz JR, Schuh CA. The Hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 2007;55:5948–58.CrossRef
20.
go back to reference Frost HJ, Ashby MF. Deformation-mechanism maps. Oxford: Pergamon Press; 1982. Frost HJ, Ashby MF. Deformation-mechanism maps. Oxford: Pergamon Press; 1982.
21.
go back to reference Bower AF, Wininger EA. Two-dimensional finite element method for simulating the constitutive response and microstructure of polycrystals during high temperature plastic deformation. J Mech Phys Solids. 2004;52:1289–317.CrossRef Bower AF, Wininger EA. Two-dimensional finite element method for simulating the constitutive response and microstructure of polycrystals during high temperature plastic deformation. J Mech Phys Solids. 2004;52:1289–317.CrossRef
22.
go back to reference Cipoletti DE, Bower AF, Krajewski PEA. Microstructure-based model of the deformation mechanisms and flow stress during elevated-temperature straining of a magnesium alloy. Scr Mater. 2011;64:931–4.CrossRef Cipoletti DE, Bower AF, Krajewski PEA. Microstructure-based model of the deformation mechanisms and flow stress during elevated-temperature straining of a magnesium alloy. Scr Mater. 2011;64:931–4.CrossRef
23.
go back to reference Mukherjee AK, Bird JE, Dorn JE. Experimental correlations for high temperature creep. Trans ASM. 1969;62:155–79. Mukherjee AK, Bird JE, Dorn JE. Experimental correlations for high temperature creep. Trans ASM. 1969;62:155–79.
24.
go back to reference Weertman J. Dislocation climb theory of steady-state creep. Trans ASM. 1968;61:681–94. Weertman J. Dislocation climb theory of steady-state creep. Trans ASM. 1968;61:681–94.
25.
go back to reference Lund RW, Nix WD. High temperature creep of Ni-20Cr-2ThO2 single crystal. Acta Metall. 1976;24:469–81.CrossRef Lund RW, Nix WD. High temperature creep of Ni-20Cr-2ThO2 single crystal. Acta Metall. 1976;24:469–81.CrossRef
26.
go back to reference Ball A, Hutchison MM. Superplasticity in aluminum-zinc eutectoid. Met Sci J. 1969;3:1–6.CrossRef Ball A, Hutchison MM. Superplasticity in aluminum-zinc eutectoid. Met Sci J. 1969;3:1–6.CrossRef
27.
go back to reference Langdon TG. Grain boundary sliding as a deformation mechanism during creep. Philos Mag. 1970;178:689–700.CrossRef Langdon TG. Grain boundary sliding as a deformation mechanism during creep. Philos Mag. 1970;178:689–700.CrossRef
28.
go back to reference Conard H, Narayan J. Mechanics for grain hardening and softening in Zn. Acta Mater. 2002;50:5067–78.CrossRef Conard H, Narayan J. Mechanics for grain hardening and softening in Zn. Acta Mater. 2002;50:5067–78.CrossRef
29.
go back to reference Conard H. Grain-size dependence of the flow stress of Cu from millimeters to nanometers. Metall Mater Trans A. 2004;35:2681–95.CrossRef Conard H. Grain-size dependence of the flow stress of Cu from millimeters to nanometers. Metall Mater Trans A. 2004;35:2681–95.CrossRef
30.
go back to reference Van Swygenhoven H, Derlet PM. Grain boundary sliding in nanocrystalline fcc metals. Phys Rev B. 2001;64:224105.CrossRef Van Swygenhoven H, Derlet PM. Grain boundary sliding in nanocrystalline fcc metals. Phys Rev B. 2001;64:224105.CrossRef
31.
go back to reference Schiøtz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature. 1998;391:561–3.CrossRef Schiøtz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature. 1998;391:561–3.CrossRef
32.
go back to reference Schiøtz J, Vegge T, Di Tolla FD, Jacobsen KW. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B. 1999;60:11971.CrossRef Schiøtz J, Vegge T, Di Tolla FD, Jacobsen KW. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B. 1999;60:11971.CrossRef
33.
go back to reference Yamakov V, Wolf D, Salazar M, Phillpot SR, Gleiter H. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 2001;49:2713–22.CrossRef Yamakov V, Wolf D, Salazar M, Phillpot SR, Gleiter H. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 2001;49:2713–22.CrossRef
34.
go back to reference Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. Dislocation process in the deformation of nanocrystalline aluminum by molecular-dynamics simulation. Nat Mater. 2002;1:1–4.CrossRef Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. Dislocation process in the deformation of nanocrystalline aluminum by molecular-dynamics simulation. Nat Mater. 2002;1:1–4.CrossRef
35.
go back to reference Yu CH, Bird MW, Huang CW, Chen CS, Gao YF, White KW, Hsueh CH. Micromechanics modeling of creep fracture of zirconium diboride-silicon carbide composites at 1400–1700 °C. J Eur Ceram Soc. 2014;34:4145–55.CrossRef Yu CH, Bird MW, Huang CW, Chen CS, Gao YF, White KW, Hsueh CH. Micromechanics modeling of creep fracture of zirconium diboride-silicon carbide composites at 1400–1700 °C. J Eur Ceram Soc. 2014;34:4145–55.CrossRef
36.
go back to reference Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003;51:5743–74.CrossRef Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003;51:5743–74.CrossRef
37.
go back to reference Carsley JE, Ning J, Milligan WW, Hackney SA, Aifantis A. Simple mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostruct Mater. 1995;4:441–7.CrossRef Carsley JE, Ning J, Milligan WW, Hackney SA, Aifantis A. Simple mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostruct Mater. 1995;4:441–7.CrossRef
38.
go back to reference Yang XS, Wang YJ, Zhai HR, Wang GY, YJ S, Dai LH, Ogata S, Zhang TY. Time-, stress-, and temperature-dependent deformation in nanostructured copper: creep tests and simulations. J Mech Phys Solids. 2016;94:191–206.CrossRef Yang XS, Wang YJ, Zhai HR, Wang GY, YJ S, Dai LH, Ogata S, Zhang TY. Time-, stress-, and temperature-dependent deformation in nanostructured copper: creep tests and simulations. J Mech Phys Solids. 2016;94:191–206.CrossRef
Metadata
Title
Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes
Authors
Wei Zhang
Yanfei Gao
Tai-Gang Nieh
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_75

Premium Partners