Skip to main content
Top

2023 | OriginalPaper | Chapter

Competitive Programming Vestige Using Machine Learning

Authors : Ajay Dharmarajula, Challa Sahithi, G. S. Prasada Reddy

Published in: Intelligent Systems and Machine Learning

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Competitive programming improves our problem-solving abil ity. It helps in writing the source code of computer programs that help in solving given problems, and the majority of the problems are mathemat ical or logical in nature. In view of its staggering and different nature, programming requires a particular level of expertise in the examination of estimations, data structures, science, formal reasoning, and related tasks like testing and investigating. In light of the growing regard for expectations for programming, there exist different genuine programming platforms like HackerRank, CodeChef, CodeForces, Spoj, etc. where students can practice and work on their competitive programming skills. Monitoring the progress on these different platforms becomes hectic as they have to manually check each one. Also, there is no tool that helps in predicting their future scores based on their current practice. Another issue is that if the organisations or institutions wanted to monitor their student’s progress, it would be tougher as it would have to be done for each student manually. This work will help the students, as well as the organisations or institutions, maintain a proper portal with data to monitor their progress, by which students can improve their competitive programming skills, saving a lot of time compared to the time taken to do this monitoring manually.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kaushal, R., Singh, A.: Automated evaluation of programming assignments. In: International Conference on Engineering Education: Innovative Practices and Future Trends, AICERA, July 2012. ISBN NO: 978-81-921320-1-3 Kaushal, R., Singh, A.: Automated evaluation of programming assignments. In: International Conference on Engineering Education: Innovative Practices and Future Trends, AICERA, July 2012. ISBN NO: 978-81-921320-1-3
2.
go back to reference Sagar, M., Kaushal, A.G.R.: Performance prediction and behavioural analysis of student programming ability. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE (2016). ISBN NO: 978-1-5090-2030-0 Sagar, M., Kaushal, A.G.R.: Performance prediction and behavioural analysis of student programming ability. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE (2016). ISBN NO: 978-1-5090-2030-0
3.
go back to reference Devasia, T., Vinushree, T.P., Hegde, V.: Prediction of students’ performance using Educational Data Mining. In: 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE). IEEE (2016). ISBN No: 978-1-4673-8595-4 Devasia, T., Vinushree, T.P., Hegde, V.: Prediction of students’ performance using Educational Data Mining. In: 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE). IEEE (2016). ISBN No: 978-1-4673-8595-4
4.
go back to reference Sivasakthi, M.: Classification and prediction based data mining algorithms to predict students’ introductory programming performance. Published in 2017 International Conference on Inventive Computing and Informatics (ICICI). IEEE (2017). ISBN:978- 1-5386-4032-6, Sivasakthi, M.: Classification and prediction based data mining algorithms to predict students’ introductory programming performance. Published in 2017 International Conference on Inventive Computing and Informatics (ICICI). IEEE (2017). ISBN:978- 1-5386-4032-6,
6.
go back to reference Gouse Baig Mohammad, S., Kumar, P.R.: Integrated machine learning model for an URL phishing detection. Int. J. Grid Distrib. Comput. 14(1), 513–529 (2022) Gouse Baig Mohammad, S., Kumar, P.R.: Integrated machine learning model for an URL phishing detection. Int. J. Grid Distrib. Comput. 14(1), 513–529 (2022)
Metadata
Title
Competitive Programming Vestige Using Machine Learning
Authors
Ajay Dharmarajula
Challa Sahithi
G. S. Prasada Reddy
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_22

Premium Partner