Skip to main content
Top
Published in: Archive of Applied Mechanics 4/2018

01-12-2017 | Original

Complex variable formulation for a rigid line inclusion interacting with a generalized singularity

Authors: Lifeng Ma, Biao Wang, Alexander M. Korsunsky

Published in: Archive of Applied Mechanics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Analytical solution for a rigid line inclusion embedded in an infinite-extended plane under non-uniform loading is still a challenging problem in inclusion mechanics, which has both theoretical and applied significance in material engineering. In this paper, by directly employing Kolosov–Muskhelishvili stress potentials, a rigid line inclusion interacting with a generalized singularity is addressed in the framework of plane deformation, with the help of the superposition principle. It should be pointed out that the generalized singularity in this study can represent a point force, an edge dislocation, a point moment, a point nucleus of strain, and even remote uniform load, etc. The solutions can be used as kernel functions for integral equation formulations of rigid line inclusion–substrate system models using the Green’s function method. With this framework, stress field and stress intensity factors at the line inclusion ends are analyzed. The application of the solutions is demonstrated with two simple examples: (i) the rigid line inclusion under remote loading is studied, and it is strictly confirmed with rigorous proof that the remote shear load will not arouse stress concentration; (ii) a rigid line inclusion interacting with a dislocation is investigated, and the full solution is given. These examples also partially validate the general solution derived this study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Brussa, T.R., Westmann, R.A.: A Westergaard-type stress function for line inclusion problem. Int. J. Solids Struct. 11, 665–677 (1975)CrossRefMATH Brussa, T.R., Westmann, R.A.: A Westergaard-type stress function for line inclusion problem. Int. J. Solids Struct. 11, 665–677 (1975)CrossRefMATH
3.
go back to reference Chu, W.W.L., Conway, H.D.: Bond stresses in composites with overlapping fibers. Int. J. Mech. Sci. 12, 761–774 (1970)CrossRef Chu, W.W.L., Conway, H.D.: Bond stresses in composites with overlapping fibers. Int. J. Mech. Sci. 12, 761–774 (1970)CrossRef
4.
go back to reference Dundurs, J., Markenscoff, X.: A Green’s function formulation of anticracks and their interaction with load-induced singularities. J. Appl. Mech. ASME 56, 550–556 (1989)CrossRefMATH Dundurs, J., Markenscoff, X.: A Green’s function formulation of anticracks and their interaction with load-induced singularities. J. Appl. Mech. ASME 56, 550–556 (1989)CrossRefMATH
5.
go back to reference Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)MathSciNetCrossRefMATH Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)MathSciNetCrossRefMATH
6.
go back to reference Hasebe, N., Keer, L.M., Nemat-Nasser, S.: Stress analysis of a kinked crack initiating from a rigid line inclusion. Part I: formulation. Mech. Mater. 3, 131–45 (1984a)CrossRef Hasebe, N., Keer, L.M., Nemat-Nasser, S.: Stress analysis of a kinked crack initiating from a rigid line inclusion. Part I: formulation. Mech. Mater. 3, 131–45 (1984a)CrossRef
7.
go back to reference Hasebe, N., Nemat-Nasser, S., Keer, L.M.: Stress analysis of a kinked crack initiating from a rigid line inclusion. Part II: direction of propagation. Mech. Mater. 3, 147–56 (1984b)CrossRef Hasebe, N., Nemat-Nasser, S., Keer, L.M.: Stress analysis of a kinked crack initiating from a rigid line inclusion. Part II: direction of propagation. Mech. Mater. 3, 147–56 (1984b)CrossRef
8.
9.
go back to reference Hu, K.X., Chanra, A.: Interactions among general systems of cracks and anticrack: an integral equation approach. J. Appl. Mech. ASME 60, 920–929 (1993)CrossRef Hu, K.X., Chanra, A.: Interactions among general systems of cracks and anticrack: an integral equation approach. J. Appl. Mech. ASME 60, 920–929 (1993)CrossRef
10.
go back to reference Itou, H., Khludnev, A.M., Rudoy, E.M., Tani, A.: Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity. Z. Angew. Math. Mech. 92, 716–730 (2012)MathSciNetCrossRefMATH Itou, H., Khludnev, A.M., Rudoy, E.M., Tani, A.: Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity. Z. Angew. Math. Mech. 92, 716–730 (2012)MathSciNetCrossRefMATH
11.
go back to reference Ma, L.F., Wang, B., Korsunsky, A.M.: Plane deformation of circular inhomogeneous inclusion problems with non-uniform symmetrical dilatational eigenstrain. Mater. Des. 86, 809–817 (2015)CrossRef Ma, L.F., Wang, B., Korsunsky, A.M.: Plane deformation of circular inhomogeneous inclusion problems with non-uniform symmetrical dilatational eigenstrain. Mater. Des. 86, 809–817 (2015)CrossRef
12.
go back to reference Ma, L.F., Zhao, J., Korsunsky, A.M.: Fundamental solutions for singularities within a layered solid. Eur. J. Mech. A Solid. 35, 37–46 (2012)MathSciNetCrossRefMATH Ma, L.F., Zhao, J., Korsunsky, A.M.: Fundamental solutions for singularities within a layered solid. Eur. J. Mech. A Solid. 35, 37–46 (2012)MathSciNetCrossRefMATH
13.
go back to reference Ma, L.F., Lu, T.J., Korsunsky, A.M.: Vector J-integral analysis of crack interaction with pre-existing singularities. J. Appl. Mech. ASME 73, 876–883 (2006)CrossRefMATH Ma, L.F., Lu, T.J., Korsunsky, A.M.: Vector J-integral analysis of crack interaction with pre-existing singularities. J. Appl. Mech. ASME 73, 876–883 (2006)CrossRefMATH
14.
go back to reference Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff Publisher, Dordrecht (1987)CrossRefMATH Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff Publisher, Dordrecht (1987)CrossRefMATH
15.
go back to reference Muskhelishvili, N.I.: Some Problems of Mathematical Theory of Elasticity (English Transl. from the third Russian edition). Noordhoff Ltd., Groningen (1953) Muskhelishvili, N.I.: Some Problems of Mathematical Theory of Elasticity (English Transl. from the third Russian edition). Noordhoff Ltd., Groningen (1953)
16.
go back to reference Nan, H.S., Wang, B.L.: Effect of interface stress on the fracture behavior of a nanoscale linear inclusion along the interface of biomaterials. Int. J. Solids Struct. 51, 4094–4100 (2014)CrossRef Nan, H.S., Wang, B.L.: Effect of interface stress on the fracture behavior of a nanoscale linear inclusion along the interface of biomaterials. Int. J. Solids Struct. 51, 4094–4100 (2014)CrossRef
17.
go back to reference Nishimura, N., Liu, Y.J.: Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation method. Comput. Mech. 35, 1–10 (2004)CrossRefMATH Nishimura, N., Liu, Y.J.: Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation method. Comput. Mech. 35, 1–10 (2004)CrossRefMATH
18.
go back to reference Shodja, H.M., Ojaghnezhad, F.: A general unified treatment of lamellar inhomogeneities. Eng. Fract. Mech. 74, 1499–1510 (2007)CrossRef Shodja, H.M., Ojaghnezhad, F.: A general unified treatment of lamellar inhomogeneities. Eng. Fract. Mech. 74, 1499–1510 (2007)CrossRef
19.
go back to reference Wang, Z.Y., Zhang, H.T., Chou, Y.T.: Characteristics of the elastic field of a rigid line inhomogeneity. J. Appl. Mech. ASME 52, 818–822 (1985)CrossRef Wang, Z.Y., Zhang, H.T., Chou, Y.T.: Characteristics of the elastic field of a rigid line inhomogeneity. J. Appl. Mech. ASME 52, 818–822 (1985)CrossRef
20.
go back to reference Zeng, J., Saltysiak, B., Johnson, W.S., Schiraldi, A., Kumar, S.: Processing and properties of poly(methyl methacrylate)/carbon nanofiber composites. Compos. B 35, 245–9 (2004)CrossRef Zeng, J., Saltysiak, B., Johnson, W.S., Schiraldi, A., Kumar, S.: Processing and properties of poly(methyl methacrylate)/carbon nanofiber composites. Compos. B 35, 245–9 (2004)CrossRef
Metadata
Title
Complex variable formulation for a rigid line inclusion interacting with a generalized singularity
Authors
Lifeng Ma
Biao Wang
Alexander M. Korsunsky
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 4/2018
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-017-1330-1

Other articles of this Issue 4/2018

Archive of Applied Mechanics 4/2018 Go to the issue

Premium Partners