Skip to main content
Top

2006 | OriginalPaper | Chapter

Complexity of Graph Self-assembly in Accretive Systems and Self-destructible Systems

Authors : John H. Reif, Sudheer Sahu, Peng Yin

Published in: DNA Computing

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Self-assembly is a process in which small objects autonomously associate with each other to form larger complexes. It is ubiquitous in biological constructions at the cellular and molecular scale and has also been identified by nanoscientists as a fundamental method for building nano-scale structures. Recent years see convergent interest and efforts in studying self-assembly from mathematicians, computer scientists, physicists, chemists, and biologists. However most complexity theoretic studies of self-assembly utilize mathematical models with two limitations: 1) only attraction, while no repulsion, is studied; 2) only assembled structures of two dimensional square grids are studied. In this paper, we study the complexity of the assemblies resulting from the cooperative effect of repulsion and attraction in a more general setting of graphs. This allows for the study of a more general class of self-assembled structures than the previous tiling model. We define two novel assembly models, namely the accretive graph assembly model and the self-destructible graph assembly model, and identify one fundamental problem in them: the sequential construction of a given graph, referred to as Accretive Graph Assembly Problem (

$\textsc{AGAP}$

) and Self-Destructible Graph Assembly Problem (

$\textsc{DGAP}$

), respectively. Our main results are: (i)

$\textsc{AGAP}$

is

NP

-complete even if the maximum degree of the graph is restricted to 4 or the graph is restricted to be planar with maximum degree 5; (ii) counting the number of sequential assembly orderings that result in a target graph (

$\textsc{\#AGAP}$

) is #

P

-complete; and (iii)

$\textsc{DGAP}$

is

PSPACE

-complete even if the maximum degree of the graph is restricted to 6 (this is the first

PSPACE

-complete result in self-assembly). We also extend the accretive graph assembly model to a stochastic model, and prove that determining the probability of a given assembly in this model is #

P

-complete.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadata
Title
Complexity of Graph Self-assembly in Accretive Systems and Self-destructible Systems
Authors
John H. Reif
Sudheer Sahu
Peng Yin
Copyright Year
2006
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/11753681_21

Premium Partner