Skip to main content
Top
Published in: Cellulose 11/2019

06-06-2019 | Original Research

Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators

Authors: Chenghao Huang, Hui Ji, Bin Guo, Lei Luo, Weilin Xu, Jinping Li, Jie Xu

Published in: Cellulose | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Composite nanofiber membranes comprising bacterial cellulose (BC) and halloysite nanotubes (HNTs) were prepared by vacuum filtration. The tensile strength and ionic conductivity of the nanofiber membranes were improved by the blending of HNTs. The BC/HNTs nanofiber membrane with m(BC): m(HNTs) = 150: 1 (denoted as BC/HNTs-150) exhibited superior tensile strength (84.4 MPa), high porosity (83.0%), outstanding thermal stability as well as good electrolyte retention (369% electrolyte uptake). In addition, the BC/HNTs-150 membrane delivered a higher ionic conductivity (5.13 mS cm−1) than that of the BC (2.88 mS cm−1) and commercial PP–PE–PP (2.05 mS cm−1) separators. The battery containing the BC/HNTs-150 separator also showed better capacity (162 mAh g−1) and cycling property (95% after 100 cycles) than the battery using the BC separator, demonstrating the BC/HNTs composite membranes to be hopeful candidates used in high-performance lithium-ion batteries.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alcoutlabi M, Lee H, Watson JV, Zhang X (2013) Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning. J Mater Sci 48:2690–2700CrossRef Alcoutlabi M, Lee H, Watson JV, Zhang X (2013) Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning. J Mater Sci 48:2690–2700CrossRef
go back to reference Attia NF, Menemparabath MM, Arepalli S, Geckeler KE (2013) Inorganic nanotube composites based on polyaniline: potential room-temperature hydrogen storage materials. Int J Hydrogen Energ 38:9251–9262CrossRef Attia NF, Menemparabath MM, Arepalli S, Geckeler KE (2013) Inorganic nanotube composites based on polyaniline: potential room-temperature hydrogen storage materials. Int J Hydrogen Energ 38:9251–9262CrossRef
go back to reference Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013CrossRef Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013CrossRef
go back to reference Deng S, Zhang J, Ye L, Wu J (2008) Toughening epoxies with halloysite nanotubes. Polymer 49:5119–5127CrossRef Deng S, Zhang J, Ye L, Wu J (2008) Toughening epoxies with halloysite nanotubes. Polymer 49:5119–5127CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference Hao J, Xiao Q, Lei G, Li Z, Wu L (2014) A novel polyvinylidene fluoride/microfiber composite gel polymer electrolyte with an interpenetrating network structure for lithium ion battery. Electrochem Acta 125:450–456CrossRef Hao J, Xiao Q, Lei G, Li Z, Wu L (2014) A novel polyvinylidene fluoride/microfiber composite gel polymer electrolyte with an interpenetrating network structure for lithium ion battery. Electrochem Acta 125:450–456CrossRef
go back to reference Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohyd Polym 101:1043–1060CrossRef Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohyd Polym 101:1043–1060CrossRef
go back to reference Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662CrossRef Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662CrossRef
go back to reference Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30CrossRef Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30CrossRef
go back to reference Huang F, Xu Y, Peng B, Su Y, Jiang F, Hsieh YL, Wei Q (2015) Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery. ACS Sustain Chem Eng 3:932–940CrossRef Huang F, Xu Y, Peng B, Su Y, Jiang F, Hsieh YL, Wei Q (2015) Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery. ACS Sustain Chem Eng 3:932–940CrossRef
go back to reference Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545CrossRef Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545CrossRef
go back to reference Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27CrossRef Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27CrossRef
go back to reference Jiang F, Yu N, Lei Y, Yuan F, Yu Q, Zhong C (2016) Core-shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membrane Sci 510:1–9CrossRef Jiang F, Yu N, Lei Y, Yuan F, Yu Q, Zhong C (2016) Core-shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membrane Sci 510:1–9CrossRef
go back to reference Kimura N, Sakumoto T, Mori Y, Wei K, Kim BS, Song KH, Kim IS (2014) Fabrication and characterization of reinforced electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofiber membranes. Compos Sci Technol 92:120–125CrossRef Kimura N, Sakumoto T, Mori Y, Wei K, Kim BS, Song KH, Kim IS (2014) Fabrication and characterization of reinforced electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofiber membranes. Compos Sci Technol 92:120–125CrossRef
go back to reference Lee H, Alcoutlabi M, Watson JV, Zhang X (2013) Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries. J Appl Polym Sci 129:1939–1951CrossRef Lee H, Alcoutlabi M, Watson JV, Zhang X (2013) Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries. J Appl Polym Sci 129:1939–1951CrossRef
go back to reference Li X, He J, Wu D, Zhang M, Meng J, Ni P (2015) Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators. Electrochim Acta 167:396–403CrossRef Li X, He J, Wu D, Zhang M, Meng J, Ni P (2015) Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators. Electrochim Acta 167:396–403CrossRef
go back to reference Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216CrossRef Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216CrossRef
go back to reference Liao H, Hong H, Zhang H, Li Z (2016) Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries. J Membrane Sci 498:147–157CrossRef Liao H, Hong H, Zhang H, Li Z (2016) Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries. J Membrane Sci 498:147–157CrossRef
go back to reference Liu Y, Liu M (2017) Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes. Compos Sci Technol 143:56–66CrossRef Liu Y, Liu M (2017) Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes. Compos Sci Technol 143:56–66CrossRef
go back to reference Luo P, Zhao Y, Bing Z, Liu J, Yong Y, Liu J (2010) Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497CrossRefPubMed Luo P, Zhao Y, Bing Z, Liu J, Yong Y, Liu J (2010) Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497CrossRefPubMed
go back to reference Pan R, Cheung O, Wang Z, Tammela P, Huo J, Lindh J, Edström K, Strømme M, Nyholm L (2016) Mesoporous Cladophora cellulose separators for lithium-ion batteries. J Power Sources 321:185–192CrossRef Pan R, Cheung O, Wang Z, Tammela P, Huo J, Lindh J, Edström K, Strømme M, Nyholm L (2016) Mesoporous Cladophora cellulose separators for lithium-ion batteries. J Power Sources 321:185–192CrossRef
go back to reference Pan R, Wang Z, Rui S, Lindh J, Kristina Edström K, Strømme M, Nyholm L (2017) Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose 24:2903–2911CrossRef Pan R, Wang Z, Rui S, Lindh J, Kristina Edström K, Strømme M, Nyholm L (2017) Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose 24:2903–2911CrossRef
go back to reference Ryou MH, Yong ML, Park JK, Choi JW (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries. Adv Mater 23:3066–3070CrossRef Ryou MH, Yong ML, Park JK, Choi JW (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries. Adv Mater 23:3066–3070CrossRef
go back to reference Schadler LSG, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844CrossRef Schadler LSG, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844CrossRef
go back to reference Sheng J, Tong S, He Z, Yang R (2017) Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24:4103–4122CrossRef Sheng J, Tong S, He Z, Yang R (2017) Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24:4103–4122CrossRef
go back to reference Tang Y, Ye L, Zhang Z, Friedrich K (2013) Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles? A review. Compos Sci Technol 86:26–37CrossRef Tang Y, Ye L, Zhang Z, Friedrich K (2013) Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles? A review. Compos Sci Technol 86:26–37CrossRef
go back to reference Wang H, Zhang S, Zhu M, Sui G, Yang X (2018) Remarkable heat-resistant halloysite nanotube/polyetherimide composite nanofiber membranes for high performance gel polymer electrolyte in lithium ion batteries. J Electroanal Chem 808:303–310CrossRef Wang H, Zhang S, Zhu M, Sui G, Yang X (2018) Remarkable heat-resistant halloysite nanotube/polyetherimide composite nanofiber membranes for high performance gel polymer electrolyte in lithium ion batteries. J Electroanal Chem 808:303–310CrossRef
go back to reference Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K (2015) Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22:1311–1320CrossRef Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K (2015) Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22:1311–1320CrossRef
go back to reference Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81CrossRef Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81CrossRef
go back to reference Xiao C, Yuan F, Zhang H, Yang H, Yang J, Sun D (2016) Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. J Mater Sci 51:5573–5588CrossRef Xiao C, Yuan F, Zhang H, Yang H, Yang J, Sun D (2016) Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. J Mater Sci 51:5573–5588CrossRef
go back to reference Xu Q, Kong Q, Liu Z, Wang X, Liu R, Zhang J, Yue L, Duan Y, Cui G (2014a) Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustain Chem Eng 2:194–199CrossRef Xu Q, Kong Q, Liu Z, Wang X, Liu R, Zhang J, Yue L, Duan Y, Cui G (2014a) Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustain Chem Eng 2:194–199CrossRef
go back to reference Xu Q, Kong Q, Liu Z, Zhang J, Wang X, Liu R, Yue L, Cui G (2014b) Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Adv 4:7845–7850CrossRef Xu Q, Kong Q, Liu Z, Zhang J, Wang X, Liu R, Yue L, Cui G (2014b) Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Adv 4:7845–7850CrossRef
go back to reference Xu Q, Wei C, Fan L, Peng S, Xu W, Xu J (2017) A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose 24:1889–1899CrossRef Xu Q, Wei C, Fan L, Peng S, Xu W, Xu J (2017) A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose 24:1889–1899CrossRef
go back to reference Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, Lvov Y (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano 9:1600–1612CrossRefPubMed Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, Lvov Y (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano 9:1600–1612CrossRefPubMed
go back to reference Yang M, Hou J (2014) Membranes in lithium ion batteries. Membranes 2:367–383CrossRef Yang M, Hou J (2014) Membranes in lithium ion batteries. Membranes 2:367–383CrossRef
go back to reference Yang C, Liu P, Zhao Y (2010) Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochem Acta 55:6857–6864CrossRef Yang C, Liu P, Zhao Y (2010) Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochem Acta 55:6857–6864CrossRef
go back to reference Yanilmaz M, Lu Y, Dirican M, Fu K, Zhang X (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membrane Sci 456:57–65CrossRef Yanilmaz M, Lu Y, Dirican M, Fu K, Zhang X (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membrane Sci 456:57–65CrossRef
go back to reference Yanilmaz M, Yao L, Ying L, Zhang X (2015) SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. J Power Sources 273:1114–1119CrossRef Yanilmaz M, Yao L, Ying L, Zhang X (2015) SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. J Power Sources 273:1114–1119CrossRef
go back to reference Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751CrossRef Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751CrossRef
go back to reference Yvonne T, Zhang C, Changhuan O, Edison N (2014) Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator. Cellulose 21:2811–2818CrossRef Yvonne T, Zhang C, Changhuan O, Edison N (2014) Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator. Cellulose 21:2811–2818CrossRef
go back to reference Zhang F, Ma X, Cao C, Li J, Zhu Y (2014) Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries. J Power Sources 251:423–431CrossRef Zhang F, Ma X, Cao C, Li J, Zhu Y (2014) Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries. J Power Sources 251:423–431CrossRef
go back to reference Zhao Y, Wang S, Guo Q, Shen M, Shi X (2013) Hemocompatibility of electrospun halloysite nanotube- and carbon nanotube-doped composite poly(lactic-co-glycolic acid) nanofibers. J Appl Polym Sci 127:4825–4832CrossRef Zhao Y, Wang S, Guo Q, Shen M, Shi X (2013) Hemocompatibility of electrospun halloysite nanotube- and carbon nanotube-doped composite poly(lactic-co-glycolic acid) nanofibers. J Appl Polym Sci 127:4825–4832CrossRef
go back to reference Zhu Y, Xiao S, Shi Y, Yang Y, Wu Y (2013) A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J Mater Chem A 1:7790–7797CrossRef Zhu Y, Xiao S, Shi Y, Yang Y, Wu Y (2013) A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J Mater Chem A 1:7790–7797CrossRef
go back to reference Zhu M, Lan J, Tan C, Sui G, Yang X (2016) Degradable cellulose acetate/poly-L-lacticacid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J Mater Chem A 4:12136–12143CrossRef Zhu M, Lan J, Tan C, Sui G, Yang X (2016) Degradable cellulose acetate/poly-L-lacticacid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J Mater Chem A 4:12136–12143CrossRef
go back to reference Zolin L, Destro M, Chaussy D, Penazzi N, Gerbaldi C, Beneventi D (2015) Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. J Mater Chem A 28:14894–14901CrossRef Zolin L, Destro M, Chaussy D, Penazzi N, Gerbaldi C, Beneventi D (2015) Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. J Mater Chem A 28:14894–14901CrossRef
Metadata
Title
Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators
Authors
Chenghao Huang
Hui Ji
Bin Guo
Lei Luo
Weilin Xu
Jinping Li
Jie Xu
Publication date
06-06-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 11/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02558-y

Other articles of this Issue 11/2019

Cellulose 11/2019 Go to the issue