Skip to main content
Top
Published in: Journal of Materials Science 19/2009

01-10-2009 | Ferroelectrics

Compositionally graded ferroelectric multilayers for frequency agile tunable devices

Authors: C. V. Weiss, M. B. Okatan, S. P. Alpay, M. W. Cole, E. Ngo, R. C. Toonen

Published in: Journal of Materials Science | Issue 19/2009

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, there has been significant interest toward the development of tunable dielectric materials for voltage-controlled, frequency-agile phase shifters and filters operating in the microwave regime. The fundamental challenge in designing materials systems for such tunable devices is the simultaneous requirement of high dielectric tunability (>40%) over a large temperature interval (−10 °C to +90 °C) coupled with low dielectric losses (between 3.0 dB and 4.0 dB in operational bandwidths ranging from several hundred MHz up to 30 or more GHz). We show that a high- and temperature-insensitive tunability can be realized in compositionally graded ferroelectrics and provide a brief review of the results of experimental and theoretical studies on the dielectric properties of Barium Strontium Titanate (Ba1−xSrxTiO3 or BST) multilayer heterostructures. Theoretically, we discuss the role of thermal stresses on the dielectric properties using a non-linear thermodynamic model coupled with basic electrostatic considerations to describe the interlayer interactions between the ferroelectric layers. We show that the thermal strains arising from the thermal expansion coefficient mismatch between the multilayered film and the substrate may have a significant effect on the dielectric permittivity and tunability of BST multilayers. Experimentally, compositionally graded BST multilayers (5 mol% MgO doped and undoped) were grown via metallo-organic solution deposition (MOSD) on Pt–Si substrates and electrically characterized. Optimum conditions were found to exist in BST multilayers consisting of three distinct layers of ~220 nm nominal thickness with compositions corresponding to Ba0.60Sr0.40TiO3 (BST 60/40), BST 75/25, and BST 90/10. At room temperature, the BST heterostructure has a small-signal dielectric permittivity of 360 with a dissipation factor of 0.012 and a dielectric tunability of 65% at 444 kV/cm. These properties exhibit minimal dispersion as a function of temperature ranging from 90 °C to −10 °C. Our results also show that MgO doping improves dielectric loss (tan δ = 0.008), but results in a moderate dielectric tunability of 29% at 444 kV/cm. Electrical measurements at microwave frequencies display a decrease in the dielectric permittivity and tunability for both undoped and MgO-doped BST multilayers. At 10 GHz, the dielectric response, tunability, and the loss characteristics for graded undoped BST are 261, 25% (at 1,778 kV/cm), and 0.078, respectively, and 189 and 15% (at 1,778 kV/cm), and 0.039, respectively, for the MgO-doped graded BST.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) J Electroceram 11:5CrossRef Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) J Electroceram 11:5CrossRef
3.
go back to reference Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York
4.
6.
go back to reference Landolt H, Bornstein R (1981) Numerical data and functional relationships in science and technology. Springer, Berlin Landolt H, Bornstein R (1981) Numerical data and functional relationships in science and technology. Springer, Berlin
9.
go back to reference Bao P, Jackson TJ, Wang X, Lancaster MJ (2008) J Phys D: Appl Phys 41:1 Bao P, Jackson TJ, Wang X, Lancaster MJ (2008) J Phys D: Appl Phys 41:1
10.
12.
go back to reference Cole MW, Weiss CV, Ngo E, Hirsch S, Coryell LA, Alpay SP (2008) Appl Phys Lett 92:182906CrossRef Cole MW, Weiss CV, Ngo E, Hirsch S, Coryell LA, Alpay SP (2008) Appl Phys Lett 92:182906CrossRef
13.
go back to reference Cole MW, Hubbard C, Ngo E, Ervin M, Wood M, Geyer RG (2002) J Appl Phys 92:475CrossRef Cole MW, Hubbard C, Ngo E, Ervin M, Wood M, Geyer RG (2002) J Appl Phys 92:475CrossRef
16.
go back to reference Shaw TM, Suo Z, Huang M, Liniger E, Laibowitz RB, Baniecki JD (1999) Appl Phys Lett 75:2129CrossRef Shaw TM, Suo Z, Huang M, Liniger E, Laibowitz RB, Baniecki JD (1999) Appl Phys Lett 75:2129CrossRef
19.
20.
go back to reference Cole MW, Nothwang WD, Hubbard C, Ngo E, Ervin MH (2003) J Appl Phys 93:9218CrossRef Cole MW, Nothwang WD, Hubbard C, Ngo E, Ervin MH (2003) J Appl Phys 93:9218CrossRef
21.
go back to reference Cole MW, Joshi PC, Ervin MH, Wood MC, Pfeffer RL (2000) Thin Solid Films 374:34CrossRef Cole MW, Joshi PC, Ervin MH, Wood MC, Pfeffer RL (2000) Thin Solid Films 374:34CrossRef
22.
go back to reference Li YL, Choudhury S, Haeni JH, Biegalski MD, Vasudevarao A, Sharan A, Ma HZ, Levy J, Gopalan V, Trolier-McKinstry S, Schlom DG, Jia QX, Chen LQ (2006) Phys Rev B 73:184112CrossRef Li YL, Choudhury S, Haeni JH, Biegalski MD, Vasudevarao A, Sharan A, Ma HZ, Levy J, Gopalan V, Trolier-McKinstry S, Schlom DG, Jia QX, Chen LQ (2006) Phys Rev B 73:184112CrossRef
24.
go back to reference Catalan G, Janssens A, Rispens G, Csiszar S, Seeck O, Rijnders G, Blank DHA, Noheda B (2006) Phys Rev Lett 96:127602CrossRef Catalan G, Janssens A, Rispens G, Csiszar S, Seeck O, Rijnders G, Blank DHA, Noheda B (2006) Phys Rev Lett 96:127602CrossRef
25.
go back to reference Roytburd AL, Alpay SP, Nagarajan V, Ganpule CS, Aggarwal S, Williams ED, Ramesh R (2000) Phys Rev Lett 85:190CrossRef Roytburd AL, Alpay SP, Nagarajan V, Ganpule CS, Aggarwal S, Williams ED, Ramesh R (2000) Phys Rev Lett 85:190CrossRef
27.
go back to reference Schlom DG, Chen LQ, Eom CB, Rabe KM, Streiffer SK, Triscone JM (2007) Ann Rev Mater Res 37:589CrossRef Schlom DG, Chen LQ, Eom CB, Rabe KM, Streiffer SK, Triscone JM (2007) Ann Rev Mater Res 37:589CrossRef
28.
go back to reference Kwak BS, Erbil A, Budai JD, Chisholm MF, Boatner LA, Wilkens BJ (1994) Phys Rev B 49:14865CrossRef Kwak BS, Erbil A, Budai JD, Chisholm MF, Boatner LA, Wilkens BJ (1994) Phys Rev B 49:14865CrossRef
29.
go back to reference Zhang LC, Vasiliev AL, Misirlioglu IB, Ramesh R, Alpay SP, Aindow M (2008) Appl Phys Lett 93:262903CrossRef Zhang LC, Vasiliev AL, Misirlioglu IB, Ramesh R, Alpay SP, Aindow M (2008) Appl Phys Lett 93:262903CrossRef
30.
go back to reference Speck JS, Daykin AC, Seifert A, Romanov AE, Pompe W (1995) J Appl Phys 78:1696CrossRef Speck JS, Daykin AC, Seifert A, Romanov AE, Pompe W (1995) J Appl Phys 78:1696CrossRef
32.
go back to reference Misirlioglu IB, Alpay SP, Aindow M, Nagarajan V (2006) Appl Phys Lett 88:102906CrossRef Misirlioglu IB, Alpay SP, Aindow M, Nagarajan V (2006) Appl Phys Lett 88:102906CrossRef
33.
go back to reference Misirlioglu IB, Vasiliev AL, Aindow M, Alpay SP, Ramesh R (2004) Appl Phys Lett 84:1742CrossRef Misirlioglu IB, Vasiliev AL, Aindow M, Alpay SP, Ramesh R (2004) Appl Phys Lett 84:1742CrossRef
34.
go back to reference Vrejoiu I, Le Rhun G, Zakharov ND, Hesse D, Pintilie L, Alexe M (2006) Philos Mag 86:4477CrossRef Vrejoiu I, Le Rhun G, Zakharov ND, Hesse D, Pintilie L, Alexe M (2006) Philos Mag 86:4477CrossRef
35.
36.
go back to reference Akcay G, Zhong S, Allimi BS, Alpay SP, Mantese JV (2007) Appl Phys Lett 91:012904CrossRef Akcay G, Zhong S, Allimi BS, Alpay SP, Mantese JV (2007) Appl Phys Lett 91:012904CrossRef
39.
go back to reference Lu SG, Zhu XH, Mak CL, Wong KH, Chan HLW, Choy CL (2003) Appl Phys Lett 82:2877CrossRef Lu SG, Zhu XH, Mak CL, Wong KH, Chan HLW, Choy CL (2003) Appl Phys Lett 82:2877CrossRef
40.
go back to reference Jain M, Majumder SB, Katiyar RS, Miranda FA, Van Keuls FW (2003) Appl Phys Lett 82:1911CrossRef Jain M, Majumder SB, Katiyar RS, Miranda FA, Van Keuls FW (2003) Appl Phys Lett 82:1911CrossRef
42.
go back to reference Zhu X, Lu S, Chan HLW, Choy CL, Wong KH (2003) Appl Phys A: Mater Sci Process 76:225CrossRef Zhu X, Lu S, Chan HLW, Choy CL, Wong KH (2003) Appl Phys A: Mater Sci Process 76:225CrossRef
43.
go back to reference Cole MW, Ngo E, Hirsch S, Demaree JD, Zhong S, Alpay SP (2007) J Appl Phys 102:034104CrossRef Cole MW, Ngo E, Hirsch S, Demaree JD, Zhong S, Alpay SP (2007) J Appl Phys 102:034104CrossRef
45.
go back to reference Tian HY, Luo WG, Pu XH, Qiu PS, He XY, Ding AL (2001) Solid State Commun 117:315CrossRef Tian HY, Luo WG, Pu XH, Qiu PS, He XY, Ding AL (2001) Solid State Commun 117:315CrossRef
46.
go back to reference Zhu X, Chan HLW, Choy CL, Wong KH (2002) J Vac Sci Tech A: Vac Surf Films 20:1796CrossRef Zhu X, Chan HLW, Choy CL, Wong KH (2002) J Vac Sci Tech A: Vac Surf Films 20:1796CrossRef
47.
go back to reference Zhu XH, Chong N, Chan HLW, Choy CL, Wong KH, Liu Z, Ming N (2002) Appl Phys Lett 80:3376CrossRef Zhu XH, Chong N, Chan HLW, Choy CL, Wong KH, Liu Z, Ming N (2002) Appl Phys Lett 80:3376CrossRef
48.
go back to reference Kim WJ, Chang W, Qadri SB, Pond JM, Kirchoefer SW, Chrisey DB, Horwitz JS (2000) Appl Phys Lett 76:1185CrossRef Kim WJ, Chang W, Qadri SB, Pond JM, Kirchoefer SW, Chrisey DB, Horwitz JS (2000) Appl Phys Lett 76:1185CrossRef
52.
go back to reference Cole MW, Ngo E, Hirsch S, Okatan MB, Alpay SP (2008) Appl Phys Lett 92:072906CrossRef Cole MW, Ngo E, Hirsch S, Okatan MB, Alpay SP (2008) Appl Phys Lett 92:072906CrossRef
54.
go back to reference Weiss CV, Cole MW, Alpay SP, Ngo E, Toonen RC, Hirsch SG, Demaree JD, Hubbard C (2008) Integr Ferroelectr 100:36CrossRef Weiss CV, Cole MW, Alpay SP, Ngo E, Toonen RC, Hirsch SG, Demaree JD, Hubbard C (2008) Integr Ferroelectr 100:36CrossRef
Metadata
Title
Compositionally graded ferroelectric multilayers for frequency agile tunable devices
Authors
C. V. Weiss
M. B. Okatan
S. P. Alpay
M. W. Cole
E. Ngo
R. C. Toonen
Publication date
01-10-2009
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2009
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-009-3514-8

Other articles of this Issue 19/2009

Journal of Materials Science 19/2009 Go to the issue

Premium Partners