Skip to main content
Top
Published in: Journal of Materials Science 12/2021

25-01-2021 | Review

Comprehensive review on plant fiber-reinforced polymeric biocomposites

Authors: Sakil Mahmud, K. M. Faridul Hasan, Md. Anwar Jahid, Kazi Mohiuddin, Ruoyu Zhang, Jin Zhu

Published in: Journal of Materials Science | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The expansion of environment-friendly materials based on natural sources increases dramatically in terms of biodegradable, recyclable, and environmental disputes throughout the world. Plant-based natural fiber, a high potential field of the reinforced polymer composite material, is considered as lightweight and economical products as they possess lower density, significant material characteristics, and extraordinary molding flexibility. The usage of plant fibers on the core structure of composite materials have drawn significant interest by the manufacturers to meet the increasing demand of the consumers for sustainable features with enhanced mechanical performances and functionalities. The plant fiber-based composites have widespread usage in construction, automotive, packaging, sports, biomedical, and defense sectors for their superior characteristics. Therefore, this critical review would demonstrate an overview regarding the background of natural fiber composites, factors influencing the composite properties, chemical interaction between the fiber and matrices, future potentiality, and marketing perspectives for triggering new research works in the field of biocomposite materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zaini E et al (2020) Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: a review. J Sandw Struct Mater 22(3):525–550 Zaini E et al (2020) Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: a review. J Sandw Struct Mater 22(3):525–550
2.
go back to reference Jeyapragash R, Srinivasan V, Sathiyamurthy S (2020) Mechanical properties of natural fiber/particulate reinforced epoxy composites—a review of the literature. Mater Today Proc 22:1223–1227 Jeyapragash R, Srinivasan V, Sathiyamurthy S (2020) Mechanical properties of natural fiber/particulate reinforced epoxy composites—a review of the literature. Mater Today Proc 22:1223–1227
3.
go back to reference Hasan K, Horváth PG, Alpár T (2020) Potential natural fiber polymeric nanobiocomposites: a review. Polymers 12(5):1072 Hasan K, Horváth PG, Alpár T (2020) Potential natural fiber polymeric nanobiocomposites: a review. Polymers 12(5):1072
4.
go back to reference Singh AA et al (2020) Green processing route for polylactic acid-cellulose fiber biocomposites. ACS Sustain Chem Eng 8(10):4128–4136 Singh AA et al (2020) Green processing route for polylactic acid-cellulose fiber biocomposites. ACS Sustain Chem Eng 8(10):4128–4136
5.
go back to reference KMF Hasan, PG Horváth, T Alpár (2020) Effects of alkaline treatments on coconut fiber reinforced biocomposites. In: Csiszár Beáta HC, Kajos Luca F, Kovács Olivér B, Mez˝o E, Szabó R, Szabó-Guth K (eds) 9th interdisciplinary doctoral conference doctoral student association of the University of Pécs, Pecs, Hungary pp 248 KMF Hasan, PG Horváth, T Alpár (2020) Effects of alkaline treatments on coconut fiber reinforced biocomposites. In: Csiszár Beáta HC, Kajos Luca F, Kovács Olivér B, Mez˝o E, Szabó R, Szabó-Guth K (eds) 9th interdisciplinary doctoral conference doctoral student association of the University of Pécs, Pecs, Hungary pp 248
6.
go back to reference McIntyre JE (1971) The chemistry of fibres. Edward Arnold, London McIntyre JE (1971) The chemistry of fibres. Edward Arnold, London
7.
go back to reference Piqué R et al (2018) The production and use of cordage at the early Neolithic site of La Draga (Banyoles, Spain). Quat Int 468:262–270 Piqué R et al (2018) The production and use of cordage at the early Neolithic site of La Draga (Banyoles, Spain). Quat Int 468:262–270
8.
go back to reference Hu J et al (2020) Fundamentals of the fibrous materials. In: Handbook of fibrous materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–36 Hu J et al (2020) Fundamentals of the fibrous materials. In: Handbook of fibrous materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–36
9.
go back to reference Palamutcu S (2017) Textiles and clothing sustainability. Springer, Singapore, pp 1–22 Palamutcu S (2017) Textiles and clothing sustainability. Springer, Singapore, pp 1–22
11.
go back to reference Hanan F, Jawaid M, Md Tahir P (2020) Mechanical performance of oil palm/kenaf fiber-reinforced epoxy-based bilayer hybrid composites. J Natl Fibers 17(2):155–167 Hanan F, Jawaid M, Md Tahir P (2020) Mechanical performance of oil palm/kenaf fiber-reinforced epoxy-based bilayer hybrid composites. J Natl Fibers 17(2):155–167
12.
go back to reference Nagamadhu M, Jeyaraj P, Kumar GM (2020) Influence of textile properties on dynamic mechanical behavior of epoxy composite reinforced with woven sisal fabrics. Sādhanā 45(1):1–10 Nagamadhu M, Jeyaraj P, Kumar GM (2020) Influence of textile properties on dynamic mechanical behavior of epoxy composite reinforced with woven sisal fabrics. Sādhanā 45(1):1–10
13.
go back to reference Cisneros-López EO et al (2017) Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos Interfaces 24(1):35–53 Cisneros-López EO et al (2017) Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos Interfaces 24(1):35–53
14.
go back to reference Ljungberg LY (2007) Materials selection and design for development of sustainable products. Mater Des 28(2):466–479 Ljungberg LY (2007) Materials selection and design for development of sustainable products. Mater Des 28(2):466–479
15.
go back to reference Goddard JJ, Kallis G, Norgaard RB (2019) Keeping multiple antennae up: coevolutionary foundations for methodological pluralism. Ecol Econ 165:106420 Goddard JJ, Kallis G, Norgaard RB (2019) Keeping multiple antennae up: coevolutionary foundations for methodological pluralism. Ecol Econ 165:106420
16.
go back to reference Kalita D, Netravali A (2017) Thermoset resin based fiber reinforced biocomposites. In: textile finishing—recent developments and future trends. Scrivener Publishing LLC, Beverly, MA, USA, pp 423–484 Kalita D, Netravali A (2017) Thermoset resin based fiber reinforced biocomposites. In: textile finishing—recent developments and future trends. Scrivener Publishing LLC, Beverly, MA, USA, pp 423–484
17.
go back to reference Mehmandost N et al (2019) Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation. J Environ Eng 7(5):103424 Mehmandost N et al (2019) Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation. J Environ Eng 7(5):103424
18.
go back to reference Bourmaud A et al (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408 Bourmaud A et al (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408
19.
go back to reference Reddy MM et al (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38(10–11):1653–1689 Reddy MM et al (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38(10–11):1653–1689
20.
go back to reference Wang J et al (2019) Biobased amorphous polyesters with high Tg: trade-off between rigid and flexible cyclic diols. ACS Sustain Chem Eng 7(6):6401–6411 Wang J et al (2019) Biobased amorphous polyesters with high Tg: trade-off between rigid and flexible cyclic diols. ACS Sustain Chem Eng 7(6):6401–6411
21.
go back to reference Dai J et al (2018) High-performing and fire-resistant biobased epoxy resin from renewable sources. ACS Sustain Chem Eng 6(6):7589–7599 Dai J et al (2018) High-performing and fire-resistant biobased epoxy resin from renewable sources. ACS Sustain Chem Eng 6(6):7589–7599
22.
go back to reference Chawla K (2016) Fibrous materials. Cambridge University Press, Cambridge, pp 214–219 Chawla K (2016) Fibrous materials. Cambridge University Press, Cambridge, pp 214–219
23.
go back to reference Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234 Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234
24.
go back to reference Liu Y et al (2019) Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydr Polym 218:179–187 Liu Y et al (2019) Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydr Polym 218:179–187
25.
go back to reference Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363 Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363
26.
go back to reference Hamid NH et al (2019) Mechanical properties and moisture absorption of epoxy composites mixed with amorphous and crystalline silica from rice husk. BioResources 14(3):7363–7374 Hamid NH et al (2019) Mechanical properties and moisture absorption of epoxy composites mixed with amorphous and crystalline silica from rice husk. BioResources 14(3):7363–7374
27.
go back to reference Vinod A, Siengchin S, Parameswaranpillai J (2020) Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978 Vinod A, Siengchin S, Parameswaranpillai J (2020) Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978
28.
go back to reference Biswas B et al (2019) Thermal stability, swelling and degradation behaviour of natural fibre based hybrid polymer composites. Cellulose 26(7):4445–4461 Biswas B et al (2019) Thermal stability, swelling and degradation behaviour of natural fibre based hybrid polymer composites. Cellulose 26(7):4445–4461
29.
go back to reference Bera T et al (2019) Moisture absorption and thickness swelling behaviour of luffa fibre/epoxy composite. J Reinf Plast Compos 38(19–20):923–937 Bera T et al (2019) Moisture absorption and thickness swelling behaviour of luffa fibre/epoxy composite. J Reinf Plast Compos 38(19–20):923–937
30.
go back to reference Chaudhary V, Bajpai PK, Maheshwari S (2020) Effect of moisture absorption on the mechanical performance of natural fiber reinforced woven hybrid bio-composites. J Natl Fibers 17(1):84–100 Chaudhary V, Bajpai PK, Maheshwari S (2020) Effect of moisture absorption on the mechanical performance of natural fiber reinforced woven hybrid bio-composites. J Natl Fibers 17(1):84–100
31.
go back to reference Summerscales J (2020) A review of bast fibres and their composites: part 4 ∼ organisms and enzyme processes. Compos Part A 140:106149 Summerscales J (2020) A review of bast fibres and their composites: part 4 ∼ organisms and enzyme processes. Compos Part A 140:106149
33.
go back to reference Hasan K et al (2019) A novel coloration of polyester fabric through green silver nanoparticles (G-AgNPs@ PET). Nanomaterials 9(4):569 Hasan K et al (2019) A novel coloration of polyester fabric through green silver nanoparticles (G-AgNPs@ PET). Nanomaterials 9(4):569
34.
go back to reference Mahmud S et al (2019) Multifunctional organic cotton fabric based on silver nanoparticles green synthesized from sodium alginate. Text Res J 90(11–12):1224–1236 Mahmud S et al (2019) Multifunctional organic cotton fabric based on silver nanoparticles green synthesized from sodium alginate. Text Res J 90(11–12):1224–1236
35.
go back to reference Karthika M et al (2019) Biodegradation of green polymeric composites materials. In: Bio monomers for green polymeric composite materials. John Wiley & Sons Ltd, River Street, USA, pp 141–159 Karthika M et al (2019) Biodegradation of green polymeric composites materials. In: Bio monomers for green polymeric composite materials. John Wiley & Sons Ltd, River Street, USA, pp 141–159
36.
go back to reference Muniyasamy S et al (2019) Thermal-chemical and biodegradation behaviour of alginic acid treated flax fibres/poly (hydroxybutyrate-co-valerate) PHBV green composites in compost medium. Biocatal Agric Biotechnol 22:101394 Muniyasamy S et al (2019) Thermal-chemical and biodegradation behaviour of alginic acid treated flax fibres/poly (hydroxybutyrate-co-valerate) PHBV green composites in compost medium. Biocatal Agric Biotechnol 22:101394
37.
go back to reference Zumstein MT et al (2019) Dos and do nots when assessing the biodegradation of plastics. Environ Sci Technol 53:9967–9969 Zumstein MT et al (2019) Dos and do nots when assessing the biodegradation of plastics. Environ Sci Technol 53:9967–9969
38.
go back to reference Indran S, Raj RE, Sreenivasan V (2014) Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydr Polym 110:423–429 Indran S, Raj RE, Sreenivasan V (2014) Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydr Polym 110:423–429
39.
go back to reference Zareei SA et al (2017) Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: evaluating durability and mechanical properties. Case Stud Constr Mater 7:73–81 Zareei SA et al (2017) Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: evaluating durability and mechanical properties. Case Stud Constr Mater 7:73–81
40.
go back to reference Mahmud S et al (2020) Waste cellulose fibers reinforced polylactide toughened by direct blending of epoxidized soybean oil. Fiber Polym 21(12):2949–2961 Mahmud S et al (2020) Waste cellulose fibers reinforced polylactide toughened by direct blending of epoxidized soybean oil. Fiber Polym 21(12):2949–2961
41.
go back to reference Kargarzadeh H et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393 Kargarzadeh H et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393
42.
go back to reference Zinge C, Kandasubramanian B (2020) Nanocellulose based biodegradable polymers. Eur Polym J 133:109758 Zinge C, Kandasubramanian B (2020) Nanocellulose based biodegradable polymers. Eur Polym J 133:109758
43.
go back to reference Mahmud S et al (2019) Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. J Appl Polym Sci 136(46):48221 Mahmud S et al (2019) Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. J Appl Polym Sci 136(46):48221
44.
go back to reference Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9(1):2479–2498 Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9(1):2479–2498
45.
go back to reference JR Pires, VGL de Souza, AL Fernando (2018) Production of nanocellulose from lignocellulosic biomass wastes: prospects and limitations. International conference on innovation, engineering and entrepreneurship. Springer, pp 719-725 JR Pires, VGL de Souza, AL Fernando (2018) Production of nanocellulose from lignocellulosic biomass wastes: prospects and limitations. International conference on innovation, engineering and entrepreneurship. Springer, pp 719-725
46.
go back to reference Kargarzadeh H et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227 Kargarzadeh H et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227
47.
go back to reference Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:612–632 Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:612–632
48.
go back to reference Thakur MK, VK Thakur, Prasanth R (2014) Nanocellulose-based polymer nanocomposites: an introduction. In: nanocellulose polymer nanocomposites. John Wiley & Sons Ltd, River Street, USA, pp 1–15 Thakur MK, VK Thakur, Prasanth R (2014) Nanocellulose-based polymer nanocomposites: an introduction. In: nanocellulose polymer nanocomposites. John Wiley & Sons Ltd, River Street, USA, pp 1–15
49.
go back to reference Mahmud S et al (2019) The consequence of epoxidized soybean oil in the toughening of polylactide and micro-fibrillated cellulose blend. Polym Sci Ser A 61(6):832–486 Mahmud S et al (2019) The consequence of epoxidized soybean oil in the toughening of polylactide and micro-fibrillated cellulose blend. Polym Sci Ser A 61(6):832–486
50.
go back to reference Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A 77:1–25 Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A 77:1–25
51.
go back to reference AL-Oqla FM, Omari MA (2017) Sustainable biocomposites: challenges, potential and barriers for development, in Green biocomposites. Springer, Berlin, pp 13–29 AL-Oqla FM, Omari MA (2017) Sustainable biocomposites: challenges, potential and barriers for development, in Green biocomposites. Springer, Berlin, pp 13–29
52.
go back to reference Al-Oqla FM, Sapuan S (2015) Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. JOM 67(10):2450–2463 Al-Oqla FM, Sapuan S (2015) Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. JOM 67(10):2450–2463
53.
go back to reference Sun E et al (2019) Biodegradable copolymer-based composites made from straw fiber for biocomposite flowerpots application. Compos Part B 165:193–198 Sun E et al (2019) Biodegradable copolymer-based composites made from straw fiber for biocomposite flowerpots application. Compos Part B 165:193–198
54.
go back to reference Chandrasekar M et al (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast Rubber Compos 46(3):119–136 Chandrasekar M et al (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast Rubber Compos 46(3):119–136
55.
go back to reference Al-Oqla FM, Sapuan S (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354 Al-Oqla FM, Sapuan S (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354
56.
go back to reference Nishino T et al (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63(9):1281–1286 Nishino T et al (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63(9):1281–1286
57.
go back to reference Dinesh S et al (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res 27(1):9 Dinesh S et al (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res 27(1):9
58.
go back to reference Sunny T, Pickering KL, Lim SH (2020) Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement. Cellulose 27(5):2569–2582 Sunny T, Pickering KL, Lim SH (2020) Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement. Cellulose 27(5):2569–2582
59.
go back to reference Radzuan NAM et al (2020) New processing technique for biodegradable kenaf composites: a simple alternative to commercial automotive parts. Compos Part B 184:107644 Radzuan NAM et al (2020) New processing technique for biodegradable kenaf composites: a simple alternative to commercial automotive parts. Compos Part B 184:107644
60.
go back to reference Kong C, Park H, Lee J (2014) Study on structural design and analysis of flax natural fiber composite tank manufactured by vacuum assisted resin transfer molding. Mater Lett 130:21–25 Kong C, Park H, Lee J (2014) Study on structural design and analysis of flax natural fiber composite tank manufactured by vacuum assisted resin transfer molding. Mater Lett 130:21–25
63.
go back to reference Pereira AL et al (2020) Mechanical and thermal characterization of natural intralaminar hybrid composites based on Sisal. Polymers 12(4):866 Pereira AL et al (2020) Mechanical and thermal characterization of natural intralaminar hybrid composites based on Sisal. Polymers 12(4):866
64.
go back to reference Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274 Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274
65.
go back to reference Huda MS et al (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid)(PLA) composites: a comparative study. Compos Sci Technol 66(11):1813–1824 Huda MS et al (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid)(PLA) composites: a comparative study. Compos Sci Technol 66(11):1813–1824
66.
go back to reference Bullions T et al (2006) Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites. Compos Sci Technol 66(1):102–114 Bullions T et al (2006) Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites. Compos Sci Technol 66(1):102–114
67.
go back to reference Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64(5):629–644 Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64(5):629–644
68.
go back to reference Dev VRG et al (2010) Agave sisalana, a biosorbent for the adsorption of reactive red 120 from aqueous solution. J Text Inst 101(5):414–422 Dev VRG et al (2010) Agave sisalana, a biosorbent for the adsorption of reactive red 120 from aqueous solution. J Text Inst 101(5):414–422
69.
go back to reference Jayanth D et al (2018) A review on biodegradable polymeric materials striving towards the attainment of green environment. J Polym Environ 26(2):838–865 Jayanth D et al (2018) A review on biodegradable polymeric materials striving towards the attainment of green environment. J Polym Environ 26(2):838–865
70.
go back to reference Naseem A et al (2016) Lignin-derivatives based polymers, blends and composites: a review. Int J Biol Macromol 93:296–313 Naseem A et al (2016) Lignin-derivatives based polymers, blends and composites: a review. Int J Biol Macromol 93:296–313
71.
go back to reference Ilyas R et al (2018) Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym 202:186–202 Ilyas R et al (2018) Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym 202:186–202
72.
go back to reference Seghini MC et al (2020) Effects of oxygen and tetravinylsilane plasma treatments on mechanical and interfacial properties of flax yarns in thermoset matrix composites. Cellulose 27(1):511–530 Seghini MC et al (2020) Effects of oxygen and tetravinylsilane plasma treatments on mechanical and interfacial properties of flax yarns in thermoset matrix composites. Cellulose 27(1):511–530
73.
go back to reference Aliotta L et al (2019) Evaluation of mechanical and interfacial properties of bio-composites based on poly (lactic acid) with natural cellulose fibers. Int J Mol Sci 20(4):960 Aliotta L et al (2019) Evaluation of mechanical and interfacial properties of bio-composites based on poly (lactic acid) with natural cellulose fibers. Int J Mol Sci 20(4):960
74.
go back to reference Maslinda A et al (2017) Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos Struct 167:227–237 Maslinda A et al (2017) Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos Struct 167:227–237
76.
go back to reference Saba N et al (2016) A review on flammability of epoxy polymer, cellulosic and non-cellulosic fiber reinforced epoxy composites. Polym Adv Technol 27(5):577–590 Saba N et al (2016) A review on flammability of epoxy polymer, cellulosic and non-cellulosic fiber reinforced epoxy composites. Polym Adv Technol 27(5):577–590
77.
go back to reference Shoja M et al (2020) Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures. Int J Biol Macromol 157:715–725 Shoja M et al (2020) Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures. Int J Biol Macromol 157:715–725
78.
go back to reference Sultana MZ et al (2019) Green synthesis of glycerol monostearate-modified cationic waterborne polyurethane. Emerg Mater Res 8(2):137–147 Sultana MZ et al (2019) Green synthesis of glycerol monostearate-modified cationic waterborne polyurethane. Emerg Mater Res 8(2):137–147
79.
go back to reference Tarrés Q et al (2019) Determination of mean intrinsic flexural strength and coupling factor of natural fiber reinforcement in polylactic acid biocomposites. Polymers 11(11):1736 Tarrés Q et al (2019) Determination of mean intrinsic flexural strength and coupling factor of natural fiber reinforcement in polylactic acid biocomposites. Polymers 11(11):1736
80.
go back to reference Zuccarello B, Marannano G (2018) Random short sisal fiber biocomposites: optimal manufacturing process and reliable theoretical models. Mater Des 149:87–100 Zuccarello B, Marannano G (2018) Random short sisal fiber biocomposites: optimal manufacturing process and reliable theoretical models. Mater Des 149:87–100
81.
go back to reference Pantano A, Zuccarello B (2018) Numerical model for the characterization of biocomposites reinforced by sisal fibres. Proc Struct Integr 8:517–525 Pantano A, Zuccarello B (2018) Numerical model for the characterization of biocomposites reinforced by sisal fibres. Proc Struct Integr 8:517–525
82.
go back to reference Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7):864–871 Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7):864–871
83.
go back to reference Ramesh M, Palanikumar K, Reddy KH (2017) Plant fibre based bio-composites: Sustainable and renewable green materials. Renew Sust Energ Rev 79:558–584 Ramesh M, Palanikumar K, Reddy KH (2017) Plant fibre based bio-composites: Sustainable and renewable green materials. Renew Sust Energ Rev 79:558–584
84.
go back to reference Monteiro SN et al (2016) Novel ballistic ramie fabric composite competing with KevlarTM fabric in multilayered armor. Mater Des 96:263–269 Monteiro SN et al (2016) Novel ballistic ramie fabric composite competing with KevlarTM fabric in multilayered armor. Mater Des 96:263–269
85.
go back to reference Lin Y et al (2018) Fabrication and performance of a novel 3D superhydrophobic material based on a loofah sponge from plant. Mater Lett 230:219–223 Lin Y et al (2018) Fabrication and performance of a novel 3D superhydrophobic material based on a loofah sponge from plant. Mater Lett 230:219–223
86.
go back to reference Akil H et al (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121 Akil H et al (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121
87.
go back to reference Yan W-H et al (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular plant 4(2):319–330 Yan W-H et al (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular plant 4(2):319–330
88.
go back to reference Gowda TM, Naidu A, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos Part A 30(3):277–284 Gowda TM, Naidu A, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos Part A 30(3):277–284
89.
go back to reference Ben Daly H et al (2007) Investigation of water absorption in pultruded composites containing fillers and low profile additives. Polym Compos 28(3):355–364 Ben Daly H et al (2007) Investigation of water absorption in pultruded composites containing fillers and low profile additives. Polym Compos 28(3):355–364
90.
go back to reference Dash B et al (1999) Novel, low-cost jute-polyester composites. Part 1: processing, mechanical properties, and SEM analysis. Polym Compos 20(1):62–71 Dash B et al (1999) Novel, low-cost jute-polyester composites. Part 1: processing, mechanical properties, and SEM analysis. Polym Compos 20(1):62–71
91.
go back to reference Alam M, Khan M, Lehmann E (2006) Comparative study of water absorption behavior in biopol® and jute-reinforced biopol® composite using neutron radiography technique. J Reinf Plast Compos 25(11):1179–1187 Alam M, Khan M, Lehmann E (2006) Comparative study of water absorption behavior in biopol® and jute-reinforced biopol® composite using neutron radiography technique. J Reinf Plast Compos 25(11):1179–1187
92.
go back to reference Saha A et al (1999) Study of jute fiber reinforced polyester composites by dynamic mechanical analysis. J Appl Polym Sci 71(9):1505–1513 Saha A et al (1999) Study of jute fiber reinforced polyester composites by dynamic mechanical analysis. J Appl Polym Sci 71(9):1505–1513
93.
go back to reference Dhakal H, Zhang Z, Richardson M (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683 Dhakal H, Zhang Z, Richardson M (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683
94.
go back to reference Mahmud S et al (2020) Nucleation and crystallization of poly (propylene 2, 5-furan dicarboxylate) by direct blending of microcrystalline cellulose: improved tensile and barrier properties. Cellulose 27(16):9423–9436 Mahmud S et al (2020) Nucleation and crystallization of poly (propylene 2, 5-furan dicarboxylate) by direct blending of microcrystalline cellulose: improved tensile and barrier properties. Cellulose 27(16):9423–9436
95.
go back to reference Joseph P et al (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A 34(3):253–266 Joseph P et al (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A 34(3):253–266
96.
go back to reference Pickering KL et al (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mat Bioenergy 1(1):109–117 Pickering KL et al (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mat Bioenergy 1(1):109–117
97.
go back to reference Kabir M et al (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B 43(7):2883–2892 Kabir M et al (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B 43(7):2883–2892
98.
go back to reference Alpár Tibor MG, Koroknai L (2017) Natural fiber reinforced PLA composites: effect of shape of fiber elements on properties of composites. In: handbook of composites from renewable materials design and manufacturing. John Wiley & Sons Ltd, River Street, USA, pp 287–309 Alpár Tibor MG, Koroknai L (2017) Natural fiber reinforced PLA composites: effect of shape of fiber elements on properties of composites. In: handbook of composites from renewable materials design and manufacturing. John Wiley & Sons Ltd, River Street, USA, pp 287–309
99.
go back to reference Byun J-H, Chou T-W (1989) Modelling and characterization of textile structural composites: a review. J Strain Anal Eng Design 24:253–262 Byun J-H, Chou T-W (1989) Modelling and characterization of textile structural composites: a review. J Strain Anal Eng Design 24:253–262
100.
go back to reference Bilisik K (2012) Multiaxis three-dimensional weaving for composites: a review. Text Res J 82(7):725–743 Bilisik K (2012) Multiaxis three-dimensional weaving for composites: a review. Text Res J 82(7):725–743
101.
go back to reference Tiber B, Balcıoğlu HE (2019) Flexural and fracture behavior of natural fiber knitted fabric reinforced composites. Polym Compos 40(1):217–228 Tiber B, Balcıoğlu HE (2019) Flexural and fracture behavior of natural fiber knitted fabric reinforced composites. Polym Compos 40(1):217–228
102.
go back to reference Kenned JJ et al (2020) Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos Sci Technol 185:107890 Kenned JJ et al (2020) Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos Sci Technol 185:107890
103.
go back to reference Ku H et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42(4):856–873 Ku H et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42(4):856–873
105.
go back to reference Zako M, Uetsuji Y, Kurashiki T (2003) Finite element analysis of damaged woven fabric composite materials. Compos Sci Technol 63(3):507–516 Zako M, Uetsuji Y, Kurashiki T (2003) Finite element analysis of damaged woven fabric composite materials. Compos Sci Technol 63(3):507–516
106.
go back to reference Böhm HJ, Eckschlager A, Han W (2002) Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput Mater Sci 25(1):42–53 Böhm HJ, Eckschlager A, Han W (2002) Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput Mater Sci 25(1):42–53
107.
go back to reference Rong MZ et al (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447 Rong MZ et al (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447
108.
go back to reference Uddin N et al (2006) Vacuum-assisted resin transfer molding. Concr Int 28(11):53–56 Uddin N et al (2006) Vacuum-assisted resin transfer molding. Concr Int 28(11):53–56
109.
go back to reference Abraham D, Matthews S, McIlhagger R (1998) A comparison of physical properties of glass fibre epoxy composites produced by wet lay-up with autoclave consolidation and resin transfer moulding. Compos Part A 29(7):795–801 Abraham D, Matthews S, McIlhagger R (1998) A comparison of physical properties of glass fibre epoxy composites produced by wet lay-up with autoclave consolidation and resin transfer moulding. Compos Part A 29(7):795–801
110.
go back to reference Francucci G, Rodríguez ES, Vázquez A (2010) Study of saturated and unsaturated permeability in natural fiber fabrics. Compos Part A 41(1):16–21 Francucci G, Rodríguez ES, Vázquez A (2010) Study of saturated and unsaturated permeability in natural fiber fabrics. Compos Part A 41(1):16–21
111.
go back to reference Masoodi R et al (2012) Numerical simulation of LCM mold-filling during the manufacture of natural fiber composites. J Reinf Plast Compos 31(6):363–378 Masoodi R et al (2012) Numerical simulation of LCM mold-filling during the manufacture of natural fiber composites. J Reinf Plast Compos 31(6):363–378
112.
go back to reference Van Hau Nguyen ML, Cosson B (2014) Experimental analysis of flow behavior in the flax fibre reinforcement with double scale porosity. 12th International Conference on Flow Processes in Composite materials (FPCM-12). Enschede, Netherlands, July 14–16, 2014 Van Hau Nguyen ML, Cosson B (2014) Experimental analysis of flow behavior in the flax fibre reinforcement with double scale porosity. 12th International Conference on Flow Processes in Composite materials (FPCM-12). Enschede, Netherlands, July 14–16, 2014
113.
go back to reference Nguyen V-H (2017) Characterization and modeling of flax fiber in composite processing. Scholars’ Press, Atlanta, p 180 Nguyen V-H (2017) Characterization and modeling of flax fiber in composite processing. Scholars’ Press, Atlanta, p 180
114.
go back to reference Adekunle K, Åkesson D, Skrifvars M (2010) Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. J Appl Polym Sci 116(3):1759–1765 Adekunle K, Åkesson D, Skrifvars M (2010) Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. J Appl Polym Sci 116(3):1759–1765
115.
go back to reference Van de Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fibre reinforced composites. Compos Struct 54(2):355–360 Van de Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fibre reinforced composites. Compos Struct 54(2):355–360
116.
go back to reference Baran I, Tutum CC, Hattel JH (2013) The effect of thermal contact resistance on the thermosetting pultrusion process. Compos Part B 45(1):995–1000 Baran I, Tutum CC, Hattel JH (2013) The effect of thermal contact resistance on the thermosetting pultrusion process. Compos Part B 45(1):995–1000
117.
go back to reference Alam M, Maniruzzaman M, Morshed M (2014) Application and advances in microprocessing of natural fiber (Jute)–based composites. Elsevier, Amsterdam, pp 243–260 Alam M, Maniruzzaman M, Morshed M (2014) Application and advances in microprocessing of natural fiber (Jute)–based composites. Elsevier, Amsterdam, pp 243–260
118.
go back to reference Balla VK et al (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B 174:106956 Balla VK et al (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B 174:106956
119.
go back to reference Kikuchi T et al (2014) Relationships between degree of skill, dimension stability and mechanical properties of composite structure in hand lay-up fabrication method. In: contemporary ergonomics and human factors 2014—proceedings of the international conference on ergonomics & human factors 2014, Southampton, UK, 7–10 April 2014. CRC Press, pp 1–9 Kikuchi T et al (2014) Relationships between degree of skill, dimension stability and mechanical properties of composite structure in hand lay-up fabrication method. In: contemporary ergonomics and human factors 2014—proceedings of the international conference on ergonomics & human factors 2014, Southampton, UK, 7–10 April 2014. CRC Press, pp 1–9
120.
go back to reference Yuhazri M, Sihombing H (2010) A comparison process between vacuum infusion and hand lay-up method toward kenaf/polyester composite. Int J Basic Appl Sci 10:63–66 Yuhazri M, Sihombing H (2010) A comparison process between vacuum infusion and hand lay-up method toward kenaf/polyester composite. Int J Basic Appl Sci 10:63–66
121.
go back to reference Faria DL et al (2020) Production of castor oil-based polyurethane resin composites reinforced with coconut husk fibres. J Polym Res 27(9):1–13 Faria DL et al (2020) Production of castor oil-based polyurethane resin composites reinforced with coconut husk fibres. J Polym Res 27(9):1–13
122.
go back to reference Scherübl B, Hintermann M (2005) Application of natural fibre reinforced plastics for automotive exterior parts, with a focus on underfloor systems. In: Proceedings of the 8th international AVK-TV conference Baden: Baden, pp 221-268 Scherübl B, Hintermann M (2005) Application of natural fibre reinforced plastics for automotive exterior parts, with a focus on underfloor systems. In: Proceedings of the 8th international AVK-TV conference Baden: Baden, pp 221-268
123.
go back to reference Araújo J, Waldman W, De Paoli M (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775 Araújo J, Waldman W, De Paoli M (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775
124.
go back to reference Moudood A, Hall W, Öchsner A, Li H, Rahman A, Francucci G (2019) Effect of moisture in flax fibres on the quality of their composites. J Nat Fibers 16(2):209–224 Moudood A, Hall W, Öchsner A, Li H, Rahman A, Francucci G (2019) Effect of moisture in flax fibres on the quality of their composites. J Nat Fibers 16(2):209–224
126.
go back to reference Hindersmann A (2019) Confusion about infusion: an overview of infusion processes. Compos Part A 126:105583 Hindersmann A (2019) Confusion about infusion: an overview of infusion processes. Compos Part A 126:105583
127.
go back to reference WilliamsChristopher SJ, Stephen G (1996) Resin infusion under flexible tooling: a review. Compos Part A 27(7):517–524 WilliamsChristopher SJ, Stephen G (1996) Resin infusion under flexible tooling: a review. Compos Part A 27(7):517–524
128.
go back to reference Summerscales J, Searle T (2005) Low-pressure (vacuum infusion) techniques for moulding large composite structures. Proc Inst Mech Eng Part L J Mater Des Appl 219(1):45–58 Summerscales J, Searle T (2005) Low-pressure (vacuum infusion) techniques for moulding large composite structures. Proc Inst Mech Eng Part L J Mater Des Appl 219(1):45–58
129.
go back to reference Williams C, Summerscales J, Grove S (1996) Resin infusion under flexible tooling (RIFT): a review. Compos Part A 27(7):517–524 Williams C, Summerscales J, Grove S (1996) Resin infusion under flexible tooling (RIFT): a review. Compos Part A 27(7):517–524
130.
go back to reference Summerscales J (2011) Resin infusion under flexible tooling (RIFT). In: Wiley encyclopedia of composites. John Wiley & Sons Ltd, River Street, USA, pp 1–11 Summerscales J (2011) Resin infusion under flexible tooling (RIFT). In: Wiley encyclopedia of composites. John Wiley & Sons Ltd, River Street, USA, pp 1–11
131.
go back to reference Dewan MW et al (2013) Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. J Appl Polym Sci 128(6):4110–4123 Dewan MW et al (2013) Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. J Appl Polym Sci 128(6):4110–4123
132.
go back to reference Harris D et al (2010) Tools for cellulose analysis in plant cell walls. Plant Physiol 153(2):420–426 Harris D et al (2010) Tools for cellulose analysis in plant cell walls. Plant Physiol 153(2):420–426
133.
go back to reference Kasai W et al (2005) Compression behavior of Langmuir–Blodgett monolayers of regioselectively substituted cellulose ethers with long alkyl side chains. Langmuir 21(6):2323–2329 Kasai W et al (2005) Compression behavior of Langmuir–Blodgett monolayers of regioselectively substituted cellulose ethers with long alkyl side chains. Langmuir 21(6):2323–2329
134.
go back to reference Abdelmouleh M et al (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7):1627 Abdelmouleh M et al (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7):1627
135.
go back to reference Madsen B et al (2004) Properties of plant fiber yarn polymer composites. Compos Part B 174:106956 Madsen B et al (2004) Properties of plant fiber yarn polymer composites. Compos Part B 174:106956
136.
go back to reference Rajendran Royan NR et al (2018) UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites. PLoS ONE 13(5):e0197345 Rajendran Royan NR et al (2018) UV/O3 treatment as a surface modification of rice husk towards preparation of novel biocomposites. PLoS ONE 13(5):e0197345
137.
go back to reference Bhatia JK, BS Kaith, Kalia S (2016) Recent developments in surface modification of natural fibers for their use in biocomposites. In: biodegradable green composites. John Wiley & Sons Ltd, River Street, USA, pp 80–117 Bhatia JK, BS Kaith, Kalia S (2016) Recent developments in surface modification of natural fibers for their use in biocomposites. In: biodegradable green composites. John Wiley & Sons Ltd, River Street, USA, pp 80–117
138.
go back to reference Kocaman S et al (2017) Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydr polym 159:48–57 Kocaman S et al (2017) Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydr polym 159:48–57
139.
go back to reference Sood M, Dwivedi G (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt J Pet 27(4):775–783 Sood M, Dwivedi G (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt J Pet 27(4):775–783
140.
go back to reference Manral, A. and P.K. Bajpai (2018) Analysis of Natural fiber constituents: a review. in IOP Conference Series: Materials Science and Engineering. IOP Publishing. pp 1–5 Manral, A. and P.K. Bajpai (2018) Analysis of Natural fiber constituents: a review. in IOP Conference Series: Materials Science and Engineering. IOP Publishing. pp 1–5
141.
go back to reference Liu M et al (2017) Oxidation of lignin in hemp fibres by laccase: effects on mechanical properties of hemp fibres and unidirectional fibre/epoxy composites. Compos A 95:377–387 Liu M et al (2017) Oxidation of lignin in hemp fibres by laccase: effects on mechanical properties of hemp fibres and unidirectional fibre/epoxy composites. Compos A 95:377–387
142.
go back to reference Sgriccia N, Hawley M, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos A 39(10):1632–1637 Sgriccia N, Hawley M, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos A 39(10):1632–1637
143.
go back to reference Battegazzore D et al (2019) Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for industrial load carrying applications. Compos B 163:761–768 Battegazzore D et al (2019) Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for industrial load carrying applications. Compos B 163:761–768
144.
go back to reference Lee WJ et al (2019) Interfacially-grafted single wall carbon nanotube/poly (vinyl alcohol) composite fibers. Carbon 146:162–171 Lee WJ et al (2019) Interfacially-grafted single wall carbon nanotube/poly (vinyl alcohol) composite fibers. Carbon 146:162–171
145.
go back to reference Sanjay M et al (2019) The hybrid effect of Jute/Kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. J Nat Fibers 16(4):600–612 Sanjay M et al (2019) The hybrid effect of Jute/Kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. J Nat Fibers 16(4):600–612
146.
go back to reference Fakirov S, Bhattacharyya D (2007) Engineering biopolymers: homopolymers, blends, and composites. Carl Hanser Verlag GmbH Co KG, Munich, Germany Fakirov S, Bhattacharyya D (2007) Engineering biopolymers: homopolymers, blends, and composites. Carl Hanser Verlag GmbH Co KG, Munich, Germany
147.
go back to reference Jain D et al (2019) Experimental and numerical investigations on the effect of alkaline hornification on the hydrothermal ageing of Agave natural fiber composites. Int J Heat Mass Tran 130:431–439 Jain D et al (2019) Experimental and numerical investigations on the effect of alkaline hornification on the hydrothermal ageing of Agave natural fiber composites. Int J Heat Mass Tran 130:431–439
148.
go back to reference Mohan T, Kanny K (2019) Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Compos B 169:118–125 Mohan T, Kanny K (2019) Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Compos B 169:118–125
149.
go back to reference Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog polym sci 37(11):1552–1596 Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog polym sci 37(11):1552–1596
150.
go back to reference Mohanty A, Misra MA, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(1):1–24 Mohanty A, Misra MA, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(1):1–24
151.
go back to reference Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B 92:94–132 Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B 92:94–132
152.
go back to reference Nadlene R et al (2016) A review on roselle fiber and its composites. J Natl Fibers 13(1):10–41 Nadlene R et al (2016) A review on roselle fiber and its composites. J Natl Fibers 13(1):10–41
154.
go back to reference Ismail AS, Jawaid M, Naveen J (2019) Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites. Materials 12(13):2094 Ismail AS, Jawaid M, Naveen J (2019) Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites. Materials 12(13):2094
155.
go back to reference Calabrese L et al (2019) Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications. J Appl Polym Sci 136(14):47203 Calabrese L et al (2019) Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications. J Appl Polym Sci 136(14):47203
156.
go back to reference Huang T, Gong Y (2018) A multiscale analysis for predicting the elastic properties of 3D woven composites containing void defects. Compos Struct 185:401–410 Huang T, Gong Y (2018) A multiscale analysis for predicting the elastic properties of 3D woven composites containing void defects. Compos Struct 185:401–410
157.
go back to reference Dona KNG et al (2020) Modeling of water wicking along fiber/matrix interface voids in unidirectional carbon/vinyl ester composites. Microfluid Nanofluid 24(31):31 Dona KNG et al (2020) Modeling of water wicking along fiber/matrix interface voids in unidirectional carbon/vinyl ester composites. Microfluid Nanofluid 24(31):31
158.
go back to reference Zakaria S, Kok Poh L (2002) Polystyrene-benzoylated EFB reinforced composites. Polym Plast Technol Eng 41(5):951–962 Zakaria S, Kok Poh L (2002) Polystyrene-benzoylated EFB reinforced composites. Polym Plast Technol Eng 41(5):951–962
159.
go back to reference Wang B et al (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J Reinf Plast Compos 26(5):447–463 Wang B et al (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J Reinf Plast Compos 26(5):447–463
161.
go back to reference Brebu M (2020) Environmental degradation of plastic composites with natural fillers—a review. Polymers 12(1):166 Brebu M (2020) Environmental degradation of plastic composites with natural fillers—a review. Polymers 12(1):166
162.
go back to reference Stana-Kleinschek K et al (2003) Correlation of regenerated cellulose fibres morphology and surface free energy components. Lenzing Ber 82(1):83–95 Stana-Kleinschek K et al (2003) Correlation of regenerated cellulose fibres morphology and surface free energy components. Lenzing Ber 82(1):83–95
163.
go back to reference Abdelmouleh M et al (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24(1):43–54 Abdelmouleh M et al (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24(1):43–54
164.
go back to reference John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207 John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207
165.
go back to reference Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos Part B 101:31–45 Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos Part B 101:31–45
166.
go back to reference Sreekala M et al (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7(5–6):295–329 Sreekala M et al (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7(5–6):295–329
167.
go back to reference Chattopadhyay H, Sarkar P (1946) A new method for the estimation of cellulose. Proc Natl Inst Sci India 12(1):23–46 Chattopadhyay H, Sarkar P (1946) A new method for the estimation of cellulose. Proc Natl Inst Sci India 12(1):23–46
168.
go back to reference Campilho R (2017) Recent innovations in biocomposite products. In: biocomposites for high-performance applications Elsevier, pp 275–306 Campilho R (2017) Recent innovations in biocomposite products. In: biocomposites for high-performance applications Elsevier, pp 275–306
169.
go back to reference Sen T, Reddy HJ (2011) Various industrial applications of hemp, kinaf, flax and ramie natural fibres. Int J Innov Manag Technol 2(3):192–198 Sen T, Reddy HJ (2011) Various industrial applications of hemp, kinaf, flax and ramie natural fibres. Int J Innov Manag Technol 2(3):192–198
170.
go back to reference B Suddell (2008) Industrial fibres: recent and current developments. In: Proceedings of the symposium on natural fibresFAO and CFC Rome, pp 71–82 B Suddell (2008) Industrial fibres: recent and current developments. In: Proceedings of the symposium on natural fibresFAO and CFC Rome, pp 71–82
171.
go back to reference Bongarde U, Shinde V (2014) Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innov Technol 3(2):431–436 Bongarde U, Shinde V (2014) Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innov Technol 3(2):431–436
172.
go back to reference Reddy BS et al (2020) Pineapple leaf fibers. Springer, Cham, pp 279–296 Reddy BS et al (2020) Pineapple leaf fibers. Springer, Cham, pp 279–296
173.
go back to reference Cai M et al (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A 90:589–597 Cai M et al (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A 90:589–597
174.
go back to reference Simbaña EA et al (2020) Handbook of natural fibres. Elsevier, Amsterdam, pp 197–218 Simbaña EA et al (2020) Handbook of natural fibres. Elsevier, Amsterdam, pp 197–218
175.
go back to reference Yeh C-H, Yang T-C (2020) Utilization of waste bamboo fibers in thermoplastic composites: influence of the chemical composition and thermal decomposition behavior. Polymers 12(3):636 Yeh C-H, Yang T-C (2020) Utilization of waste bamboo fibers in thermoplastic composites: influence of the chemical composition and thermal decomposition behavior. Polymers 12(3):636
176.
go back to reference Fei ME et al (2019) Toughening of bamboo fibers/unsaturated polyester composites with 2-acetoacetoxyethyl methacrylate. Polym Compos 40(4):1595–1601 Fei ME et al (2019) Toughening of bamboo fibers/unsaturated polyester composites with 2-acetoacetoxyethyl methacrylate. Polym Compos 40(4):1595–1601
177.
go back to reference Goh L, Zulkornain A (2019) Influence of bamboo in concrete and beam applications. J Phys Conf Ser 1349:012127 Goh L, Zulkornain A (2019) Influence of bamboo in concrete and beam applications. J Phys Conf Ser 1349:012127
178.
go back to reference Bozaci E (2019) Optimization of the alternative treatment methods for Ceiba pentandra (L.) Gaertn (kapok) fiber using response surface methodology. J Text Inst 110(10):1404–1414 Bozaci E (2019) Optimization of the alternative treatment methods for Ceiba pentandra (L.) Gaertn (kapok) fiber using response surface methodology. J Text Inst 110(10):1404–1414
179.
go back to reference Krishnadev P, Subramanian KS, Janavi GJ, Ganapathy S, Lakshmanan A (2020) Synthesis and characterization of nano-fibrillated cellulose derived from Green Agave americana L. Fiber BioResour 15(2):2442–2458 Krishnadev P, Subramanian KS, Janavi GJ, Ganapathy S, Lakshmanan A (2020) Synthesis and characterization of nano-fibrillated cellulose derived from Green Agave americana L. Fiber BioResour 15(2):2442–2458
180.
go back to reference Binoj J, Bibin J (2019) Failure analysis of discarded Agave tequilana fiber polymer composites. Eng Fail Anal 95:379–391 Binoj J, Bibin J (2019) Failure analysis of discarded Agave tequilana fiber polymer composites. Eng Fail Anal 95:379–391
181.
go back to reference Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24 Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24
182.
go back to reference García M, Garmendia I, García J (2008) Influence of natural fiber type in eco-composites. J Appl Polym Sci 107(5):2994–3004 García M, Garmendia I, García J (2008) Influence of natural fiber type in eco-composites. J Appl Polym Sci 107(5):2994–3004
183.
go back to reference Faruk O et al (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26 Faruk O et al (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26
184.
go back to reference Korniejenko K et al (2016) Mechanical properties of geopolymer composites reinforced with natural fibers. Proc Eng 151:388–393 Korniejenko K et al (2016) Mechanical properties of geopolymer composites reinforced with natural fibers. Proc Eng 151:388–393
185.
go back to reference Dash B et al (2000) Novel low-cost jute–polyester composites. III. Weathering and thermal behavior. J Appl Polym Sci 78(9):1671–1679 Dash B et al (2000) Novel low-cost jute–polyester composites. III. Weathering and thermal behavior. J Appl Polym Sci 78(9):1671–1679
186.
go back to reference Rdsg C (2015) Introduction to natural fibre composites. In: Rdsg C (ed) Natural fibre composites. CRC Press, Taylor & Francis, Boca Raton, pp 1–28 Rdsg C (2015) Introduction to natural fibre composites. In: Rdsg C (ed) Natural fibre composites. CRC Press, Taylor & Francis, Boca Raton, pp 1–28
187.
go back to reference Du Y, Yan N, Kortschot MT (2013) An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels. Compos Struct 106:160–166 Du Y, Yan N, Kortschot MT (2013) An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels. Compos Struct 106:160–166
188.
go back to reference Armstrong L, Kingston R (1960) Effect of moisture changes on creep in wood. Nature 185(4716):862–863 Armstrong L, Kingston R (1960) Effect of moisture changes on creep in wood. Nature 185(4716):862–863
189.
go back to reference Xu Y et al (2010) Creep behavior of bagasse fiber reinforced polymer composites. BioResour Technol 101(9):3280–3286 Xu Y et al (2010) Creep behavior of bagasse fiber reinforced polymer composites. BioResour Technol 101(9):3280–3286
190.
go back to reference Sadasivuni KK et al (2020) Recent advances in mechanical properties of biopolymer composites: a review. Polym Compos 41:32–1 Sadasivuni KK et al (2020) Recent advances in mechanical properties of biopolymer composites: a review. Polym Compos 41:32–1
191.
go back to reference Nosrati N, Zabett A, Sahebian S (2020) Long-term creep behaviour of E-glass/epoxy composite: time-temperature superposition principle. Plast Rubber Compos 49(6):254–262 Nosrati N, Zabett A, Sahebian S (2020) Long-term creep behaviour of E-glass/epoxy composite: time-temperature superposition principle. Plast Rubber Compos 49(6):254–262
192.
go back to reference Pai AR, Jagtap RN (2015) Surface morphology & mechanical properties of some unique natural fiber reinforced polymer composites—a review. J Mater Environ Sci 6(4):902–917 Pai AR, Jagtap RN (2015) Surface morphology & mechanical properties of some unique natural fiber reinforced polymer composites—a review. J Mater Environ Sci 6(4):902–917
193.
go back to reference Standard A G99 (2010) standard test method for wear testing with a pin-on-disk apparatus, Pp 1–5 Standard A G99 (2010) standard test method for wear testing with a pin-on-disk apparatus, Pp 1–5
194.
go back to reference Bajpai PK, Singh I, Madaan J (2013) Tribological behavior of natural fiber reinforced PLA composites. Wear 297(1–2):829–840 Bajpai PK, Singh I, Madaan J (2013) Tribological behavior of natural fiber reinforced PLA composites. Wear 297(1–2):829–840
195.
go back to reference Yousif B, Ku H (2012) Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Mater Des 36:847–853 Yousif B, Ku H (2012) Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Mater Des 36:847–853
196.
go back to reference Shubhra QT, Alam A, Beg M (2011) Mechanical and degradation characteristics of natural silk fiber reinforced gelatin composites. Mater Lett 65(2):333–336 Shubhra QT, Alam A, Beg M (2011) Mechanical and degradation characteristics of natural silk fiber reinforced gelatin composites. Mater Lett 65(2):333–336
197.
go back to reference Azwa Z et al (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442 Azwa Z et al (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442
198.
go back to reference Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A 43(8):1419–1429 Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A 43(8):1419–1429
199.
go back to reference de Andrade Silva F et al (2010) Physical and mechanical properties of durable sisal fiber–cement composites. Constr Build Mater 24(5):777–785 de Andrade Silva F et al (2010) Physical and mechanical properties of durable sisal fiber–cement composites. Constr Build Mater 24(5):777–785
200.
go back to reference Manfredi LB et al (2006) Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab 91(2):255–261 Manfredi LB et al (2006) Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab 91(2):255–261
201.
go back to reference Potluri R et al (2018) Analytical model application for prediction of mechanical properties of natural fiber reinforced composites. Mater Today 5(2):5809–5818 Potluri R et al (2018) Analytical model application for prediction of mechanical properties of natural fiber reinforced composites. Mater Today 5(2):5809–5818
202.
go back to reference Tian F, Zhong Z, Pan Y (2018) Modeling of natural fiber reinforced composites under hygrothermal ageing. Compos Struct 200:144–152 Tian F, Zhong Z, Pan Y (2018) Modeling of natural fiber reinforced composites under hygrothermal ageing. Compos Struct 200:144–152
203.
go back to reference Hallal A, Younes R, Fardoun F (2013) Review and comparative study of analytical modeling for the elastic properties of textile composites. Compos Part B 50:22–31 Hallal A, Younes R, Fardoun F (2013) Review and comparative study of analytical modeling for the elastic properties of textile composites. Compos Part B 50:22–31
204.
go back to reference Xiong X et al (2018) Finite element models of natural fibers and their composites: A review. J Reinf Plast Compos 37(9):617–635 Xiong X et al (2018) Finite element models of natural fibers and their composites: A review. J Reinf Plast Compos 37(9):617–635
205.
go back to reference Sliseris J, Yan L, Kasal B (2016) Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites. Compos B 89:143–154 Sliseris J, Yan L, Kasal B (2016) Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites. Compos B 89:143–154
206.
go back to reference Naveen J et al (2019) Finite element analysis of natural fiber-reinforced polymer composites. In: modelling of damage processes in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Duxford, UK, pp 153–170 Naveen J et al (2019) Finite element analysis of natural fiber-reinforced polymer composites. In: modelling of damage processes in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Duxford, UK, pp 153–170
207.
go back to reference Landel RF, Nielsen LE (1993) Mechanical test and polymer transitions. In: mechanical properties of polymers and composites. CRC press, Boca Ratan, USA Landel RF, Nielsen LE (1993) Mechanical test and polymer transitions. In: mechanical properties of polymers and composites. CRC press, Boca Ratan, USA
208.
go back to reference Rymaruk MJ et al (2019) Effect of core cross-linking on the physical properties of poly (dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil. Macromolecules 52(18):6849–6860 Rymaruk MJ et al (2019) Effect of core cross-linking on the physical properties of poly (dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil. Macromolecules 52(18):6849–6860
209.
go back to reference Haske-Cornelius O et al (2019) Enzymatic synthesis of highly flexible lignin cross-linked succinyl-chitosan hydrogels reinforced with reed cellulose fibres. Eur Polym J 120:109201 Haske-Cornelius O et al (2019) Enzymatic synthesis of highly flexible lignin cross-linked succinyl-chitosan hydrogels reinforced with reed cellulose fibres. Eur Polym J 120:109201
210.
go back to reference He Y et al (2020) Functionalized soybean/tung oils for combined plasticization of jute fiber-reinforced polypropylene. Mater Chem Phys 252:123247 He Y et al (2020) Functionalized soybean/tung oils for combined plasticization of jute fiber-reinforced polypropylene. Mater Chem Phys 252:123247
211.
go back to reference Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189 Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189
212.
go back to reference As N, Hindman D, Büyüksarı Ü (2018) The effect of bending parameters on mechanical properties of bent oak wood. Eur J Wood Wood Prod 76(2):633–641 As N, Hindman D, Büyüksarı Ü (2018) The effect of bending parameters on mechanical properties of bent oak wood. Eur J Wood Wood Prod 76(2):633–641
213.
go back to reference Xia Y et al (2014) Compression behavior of concrete cylinders externally confined by flax fiber reinforced polymer sheets. Adv Struct Eng 17(12):1825–1833 Xia Y et al (2014) Compression behavior of concrete cylinders externally confined by flax fiber reinforced polymer sheets. Adv Struct Eng 17(12):1825–1833
214.
go back to reference Habibi M, Laperrière L, Mahi Hassanabadi H (2019) Replacing stitching and weaving in natural fiber reinforcement manufacturing, part 1: mechanical behavior of unidirectional flax fiber composites. J Nat Fibers 16(7):1064–1076 Habibi M, Laperrière L, Mahi Hassanabadi H (2019) Replacing stitching and weaving in natural fiber reinforcement manufacturing, part 1: mechanical behavior of unidirectional flax fiber composites. J Nat Fibers 16(7):1064–1076
215.
go back to reference Trindade ACC et al (2020) Tensile behavior of strain-hardening geopolymer composites (SHGC) under impact loading. Cem Concr Compos 113:103703 Trindade ACC et al (2020) Tensile behavior of strain-hardening geopolymer composites (SHGC) under impact loading. Cem Concr Compos 113:103703
216.
go back to reference Kain G et al (2013) Softwood bark for modern composites. Pro Ligno 9(4):460–468 Kain G et al (2013) Softwood bark for modern composites. Pro Ligno 9(4):460–468
217.
go back to reference Suharty NS et al (2016) Effect of kenaf fiber as a reinforcement on the tensile, flexural strength and impact toughness properties of recycled polypropylene/halloysite composites. Proc Chem 19:253–258 Suharty NS et al (2016) Effect of kenaf fiber as a reinforcement on the tensile, flexural strength and impact toughness properties of recycled polypropylene/halloysite composites. Proc Chem 19:253–258
218.
go back to reference Sapiai N, Jumahat A, Mahmud J (2015) Flexural and tensile properties of kenaf/glass fibres hybrid composites filled with carbon nanotubes. J Teknol 76(3):115–120 Sapiai N, Jumahat A, Mahmud J (2015) Flexural and tensile properties of kenaf/glass fibres hybrid composites filled with carbon nanotubes. J Teknol 76(3):115–120
219.
go back to reference Sun L et al (2019) New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): role of furan ring’s polarity. Eur Polym J 118:642–650 Sun L et al (2019) New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): role of furan ring’s polarity. Eur Polym J 118:642–650
220.
go back to reference Sujaritjun W et al (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia 34:664–672 Sujaritjun W et al (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia 34:664–672
221.
go back to reference Fernandes EM, Mano JF, Reis RL (2013) Hybrid cork–polymer composites containing sisal fibre: morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Compos Struct 105:153–162 Fernandes EM, Mano JF, Reis RL (2013) Hybrid cork–polymer composites containing sisal fibre: morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Compos Struct 105:153–162
222.
go back to reference Georgiopoulos P et al (2016) The effect of surface treatment on the performance of flax/biodegradable composites. Compos Part B 106:88–98 Georgiopoulos P et al (2016) The effect of surface treatment on the performance of flax/biodegradable composites. Compos Part B 106:88–98
223.
go back to reference Nasution H, Harahap H (2019) Aging properties and biodegradation rate of styrofoam composite filled with modified sawdust. J Eng 15(2):17–29 Nasution H, Harahap H (2019) Aging properties and biodegradation rate of styrofoam composite filled with modified sawdust. J Eng 15(2):17–29
224.
go back to reference Jayalatha G, Kutty SK (2013) Effect of short nylon-6 fibres on natural rubber-toughened polystyrene. Mater Des 43:291–298 Jayalatha G, Kutty SK (2013) Effect of short nylon-6 fibres on natural rubber-toughened polystyrene. Mater Des 43:291–298
225.
go back to reference Murali B, Ramnath BV, Chandramohan D (2019) Mechanical properties of boehmeria nivea reinforced polymer composite. Mater Today 16:883–888 Murali B, Ramnath BV, Chandramohan D (2019) Mechanical properties of boehmeria nivea reinforced polymer composite. Mater Today 16:883–888
227.
go back to reference Park K, Kong C, Park H (2015) A Study on structural design of natural fiber composites automobile body panel considering impact load. Compos Res 28(5):291–296 Park K, Kong C, Park H (2015) A Study on structural design of natural fiber composites automobile body panel considering impact load. Compos Res 28(5):291–296
228.
go back to reference Park G, Park H (2018) Structural design and test of automobile bonnet with natural flax composite through impact damage analysis. Compos Struct 184:800–806 Park G, Park H (2018) Structural design and test of automobile bonnet with natural flax composite through impact damage analysis. Compos Struct 184:800–806
229.
go back to reference Węcławski BT, Fan M, Hui D (2014) Compressive behaviour of natural fibre composite. Compos Part B 67:183–191 Węcławski BT, Fan M, Hui D (2014) Compressive behaviour of natural fibre composite. Compos Part B 67:183–191
230.
go back to reference Gironès J et al (2011) Biocomposites from Musa textilis and polypropylene: Evaluation of flexural properties and impact strength. Compos Sci Technol 71(2):122–128 Gironès J et al (2011) Biocomposites from Musa textilis and polypropylene: Evaluation of flexural properties and impact strength. Compos Sci Technol 71(2):122–128
231.
go back to reference Zhang Y et al (2013) Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos Sci Technol 88:172–177 Zhang Y et al (2013) Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos Sci Technol 88:172–177
232.
go back to reference Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol 66(7–8):895–906 Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol 66(7–8):895–906
233.
go back to reference Chandekar H, Chaudhari V, Waigaonkar S (2020) A review of jute fiber reinforced polymer composites. Mater Today 26(2):2079–2082 Chandekar H, Chaudhari V, Waigaonkar S (2020) A review of jute fiber reinforced polymer composites. Mater Today 26(2):2079–2082
234.
go back to reference Djafar Z, Renreng I, Jannah M (2020) Tensile and bending strength analysis of ramie fiber and woven ramie reinforced epoxy composite. J Natl Fibers 1:12 Djafar Z, Renreng I, Jannah M (2020) Tensile and bending strength analysis of ramie fiber and woven ramie reinforced epoxy composite. J Natl Fibers 1:12
235.
go back to reference Akhtar MN et al (2016) Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Natl Sci Mater Int 26(6):657–664 Akhtar MN et al (2016) Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Natl Sci Mater Int 26(6):657–664
236.
go back to reference Gupta M, Srivastava R (2016) Properties of sisal fibre reinforced epoxy composite. Ind J Fiber Text 41(3):235–241 Gupta M, Srivastava R (2016) Properties of sisal fibre reinforced epoxy composite. Ind J Fiber Text 41(3):235–241
237.
go back to reference Fiorelli J et al (2013) Sugarcane bagasse and castor oil polyurethane adhesive-based particulate composite. Mater Res 16(2):439–446 Fiorelli J et al (2013) Sugarcane bagasse and castor oil polyurethane adhesive-based particulate composite. Mater Res 16(2):439–446
238.
go back to reference Cabral MR et al (2018) Evaluation of pre-treatment efficiency on sugarcane bagasse fibers for the production of cement composites. Arch Civ Mech Eng 18:1092–1102 Cabral MR et al (2018) Evaluation of pre-treatment efficiency on sugarcane bagasse fibers for the production of cement composites. Arch Civ Mech Eng 18:1092–1102
239.
go back to reference Xia T et al (2018) The characteristic changes of rice straw fibers in anaerobic digestion and its effect on rice straw-reinforced composites. Ind Crops Prod 121:73–79 Xia T et al (2018) The characteristic changes of rice straw fibers in anaerobic digestion and its effect on rice straw-reinforced composites. Ind Crops Prod 121:73–79
240.
go back to reference Takagi H, Ichihara Y (2004) Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers. JSME Int J Ser A Solid Mech Mater Eng 47:551–555 Takagi H, Ichihara Y (2004) Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers. JSME Int J Ser A Solid Mech Mater Eng 47:551–555
241.
go back to reference Jayabal S, Natarajan U (2011) Influence of fiber parameters on tensile, flexural, and impact properties of nonwoven coir–polyester composites. Int J Adv Manuf Technol 54(5):639–648 Jayabal S, Natarajan U (2011) Influence of fiber parameters on tensile, flexural, and impact properties of nonwoven coir–polyester composites. Int J Adv Manuf Technol 54(5):639–648
242.
go back to reference Ramnath BV et al (2013) Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Des 51:357–366 Ramnath BV et al (2013) Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Des 51:357–366
243.
go back to reference Odusote J, Oyewo A (2016) Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Eng Technol 7(1):125–139 Odusote J, Oyewo A (2016) Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Eng Technol 7(1):125–139
244.
go back to reference Dong Y et al (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A 63:76–84 Dong Y et al (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A 63:76–84
245.
go back to reference Hidalgo-Salazar MA, Salinas E (2019) Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Colombian biocomposites. Compos B 176:107135 Hidalgo-Salazar MA, Salinas E (2019) Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Colombian biocomposites. Compos B 176:107135
246.
go back to reference Ferrandez-Garcia MT et al (2019) Experimental evaluation of a new giant reed (Arundo Donax L.) composite using citric acid as a natural binder. Agronomy 9(12):882 Ferrandez-Garcia MT et al (2019) Experimental evaluation of a new giant reed (Arundo Donax L.) composite using citric acid as a natural binder. Agronomy 9(12):882
247.
go back to reference Sanjay M et al (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581 Sanjay M et al (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581
248.
go back to reference Islam MN et al (2010) Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos Part A Appl Sci Manuf 41(2):192–198 Islam MN et al (2010) Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos Part A Appl Sci Manuf 41(2):192–198
249.
go back to reference Georgiopoulos P, Kontou E, Georgousis G (2018) Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Compos Commun 10:6–10 Georgiopoulos P, Kontou E, Georgousis G (2018) Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Compos Commun 10:6–10
250.
go back to reference Jabbar A et al (2017) Nanocellulose coated woven jute/green epoxy composites: characterization of mechanical and dynamic mechanical behavior. Compos Struct 161:340–349 Jabbar A et al (2017) Nanocellulose coated woven jute/green epoxy composites: characterization of mechanical and dynamic mechanical behavior. Compos Struct 161:340–349
251.
go back to reference Dunne R, Desai D, Sadiku R (2017) Material characterization of blended sisal-kenaf composites with an ABS matrix. Appl Acoust 125:184–193 Dunne R, Desai D, Sadiku R (2017) Material characterization of blended sisal-kenaf composites with an ABS matrix. Appl Acoust 125:184–193
252.
go back to reference Mahmud S et al (2020) Fully Bio-based micro-cellulose incorporated poly (butylene 2, 5-furandicarboxylate) transparent composites: preparation and characterization. Fiber Polym 21(7):1550–1559 Mahmud S et al (2020) Fully Bio-based micro-cellulose incorporated poly (butylene 2, 5-furandicarboxylate) transparent composites: preparation and characterization. Fiber Polym 21(7):1550–1559
253.
go back to reference Akampumuza O et al (2017) Review of the applications of biocomposites in the automotive industry. Polym Compos 38(11):2553–2569 Akampumuza O et al (2017) Review of the applications of biocomposites in the automotive industry. Polym Compos 38(11):2553–2569
254.
go back to reference Markarian J (2007) Long fibre reinforced thermoplastics continue growth in automotive. Plast Addit Compd 9(2):20–24 Markarian J (2007) Long fibre reinforced thermoplastics continue growth in automotive. Plast Addit Compd 9(2):20–24
255.
go back to reference Adekomaya O (2020) Adaption of green composite in automotive part replacements: discussions on material modification and future patronage. Environ Sci Pollut Res 27(8):8807–8813 Adekomaya O (2020) Adaption of green composite in automotive part replacements: discussions on material modification and future patronage. Environ Sci Pollut Res 27(8):8807–8813
256.
go back to reference Chen S et al (2020) Novel poly (vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application. Macromol Biosci 20(3):1900385 Chen S et al (2020) Novel poly (vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application. Macromol Biosci 20(3):1900385
257.
go back to reference Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128 Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128
258.
go back to reference Arregi B et al (2020) Experimental and numerical thermal performance assessment of a multi-layer building envelope component made of biocomposite materials. Energy Build 214:109846 Arregi B et al (2020) Experimental and numerical thermal performance assessment of a multi-layer building envelope component made of biocomposite materials. Energy Build 214:109846
259.
go back to reference Sommerhuber PF et al (2017) Life cycle assessment of wood-plastic composites: analysing alternative materials and identifying an environmental sound end-of-life option. Resour Conserv Recycl 117:235–248 Sommerhuber PF et al (2017) Life cycle assessment of wood-plastic composites: analysing alternative materials and identifying an environmental sound end-of-life option. Resour Conserv Recycl 117:235–248
260.
go back to reference Mansor M et al (2019) The environmental impact of natural fiber composites through life cycle assessment analysis. In: durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Duxford, UK, pp 257–285 Mansor M et al (2019) The environmental impact of natural fiber composites through life cycle assessment analysis. In: durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Duxford, UK, pp 257–285
261.
go back to reference Ferri M et al (2020) From winery waste to bioactive compounds and new polymeric biocomposites: a contribution to the circular economy concept. J Adv Res 24:1–11 Ferri M et al (2020) From winery waste to bioactive compounds and new polymeric biocomposites: a contribution to the circular economy concept. J Adv Res 24:1–11
262.
go back to reference Joshi SV et al (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35(3):371–376 Joshi SV et al (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35(3):371–376
263.
go back to reference John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364 John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364
264.
go back to reference Mohanty A et al (2005) Natural fibers, biopolymers and biocomposite: an introduction. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 1–31 Mohanty A et al (2005) Natural fibers, biopolymers and biocomposite: an introduction. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 1–31
265.
go back to reference Ferreira DP, Cruz J, Fangueiro R (2019) Surface modification of natural fibers in polymer composites. In: green composites for automotive applications. Woodhead Publishing, Duxford, UK, pp 3–41 Ferreira DP, Cruz J, Fangueiro R (2019) Surface modification of natural fibers in polymer composites. In: green composites for automotive applications. Woodhead Publishing, Duxford, UK, pp 3–41
266.
go back to reference Sanyang ML et al (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sustain Energy Rev 54:533–549 Sanyang ML et al (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sustain Energy Rev 54:533–549
267.
go back to reference Correa JP, Montalvo-Navarrete JM, Hidalgo-Salazar MA (2019) Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 208:785–794 Correa JP, Montalvo-Navarrete JM, Hidalgo-Salazar MA (2019) Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 208:785–794
268.
go back to reference Europe P (2015) An analysis of European plastics production, demand and waste data. Plastics–the facts Europe P (2015) An analysis of European plastics production, demand and waste data. Plastics–the facts
269.
go back to reference Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2017) Sustainable bio-plastic production through landfill methane recycling. Renew Sustain Energy Rev 71:555–562 Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2017) Sustainable bio-plastic production through landfill methane recycling. Renew Sustain Energy Rev 71:555–562
271.
go back to reference Zhang J, Chevali VS, Wang H, Wang C-H (2020) Current status of carbon fibre and carbon fibre composites recycling. Compos Part B 193:108053 Zhang J, Chevali VS, Wang H, Wang C-H (2020) Current status of carbon fibre and carbon fibre composites recycling. Compos Part B 193:108053
272.
go back to reference Reinders MJ, Onwezen MC, Meeusen MJ (2017) Can bio-based attributes upgrade a brand? How partial and full use of bio-based materials affects the purchase intention of brands. J Clean Prod 162:1169–1179 Reinders MJ, Onwezen MC, Meeusen MJ (2017) Can bio-based attributes upgrade a brand? How partial and full use of bio-based materials affects the purchase intention of brands. J Clean Prod 162:1169–1179
273.
go back to reference Townsend T (2020) World natural fibre production and employment. In: handbook of natural fibres. Woodhead Publishing, Duxford, UK, pp 15–36 Townsend T (2020) World natural fibre production and employment. In: handbook of natural fibres. Woodhead Publishing, Duxford, UK, pp 15–36
Metadata
Title
Comprehensive review on plant fiber-reinforced polymeric biocomposites
Authors
Sakil Mahmud
K. M. Faridul Hasan
Md. Anwar Jahid
Kazi Mohiuddin
Ruoyu Zhang
Jin Zhu
Publication date
25-01-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05774-9

Other articles of this Issue 12/2021

Journal of Materials Science 12/2021 Go to the issue

Premium Partners