Skip to main content
Top
Published in: Wireless Personal Communications 2/2014

01-09-2014

Compressed Sensing Trilinear Model-Based Blind Carrier Frequency Offset Estimation for OFDM System with Multiple Antennas

Authors: Xiaofei Zhang, Wei Wu, Renzheng Cao

Published in: Wireless Personal Communications | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper addresses the problem of carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems with multiple antennas, and links CFO estimation problem in OFDM systems to the compressed sensing trilinear model. Exploiting this link, we derives a compressed sensing trilinear model-based CFO estimation algorithm. The signal model can be expressed as a trilinear model, and there exists three compressed matrices which can compress the trilinear model to be a lower dimensional one. After that, trilinear decomposition is performed for the compressed model to get the estimations of compressed data matrices, and then the CFO can be estimated through solving the sparse recovery problem via \(\ell _0\) -norm constraint. The proposed algorithm has much better CFO estimation performance than ESPRIT method, and performs very close to the trilinear decomposition-based approach which has heavier computational burden and requires much greater storage capacity. Furthermore, our proposed algorithm can even work in condition of no virtual carrier. We derive the Cramer-Rao bound of CFO estimation for multiple antenna OFDM system. Simulation results illustrate performance of our algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications, 42(10), 2908–2914.CrossRef Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications, 42(10), 2908–2914.CrossRef
2.
go back to reference Minn, H., & Xing, S. (2005). An optimal training signal structure for frequency-offset estimation. IEEE Transactions on Communications, 53(2), 343–355.CrossRef Minn, H., & Xing, S. (2005). An optimal training signal structure for frequency-offset estimation. IEEE Transactions on Communications, 53(2), 343–355.CrossRef
3.
go back to reference van de Beek, J., Sandell, M., & Borjesson, P. O. (1997). ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 45, 1800–1805.CrossRefMATH van de Beek, J., Sandell, M., & Borjesson, P. O. (1997). ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 45, 1800–1805.CrossRefMATH
4.
go back to reference Liu, H., & Tureli, U. (1998). A high-efficiency carrier estimator for OFDM communications. IEEE Communications Letters, 2, 104–106.CrossRef Liu, H., & Tureli, U. (1998). A high-efficiency carrier estimator for OFDM communications. IEEE Communications Letters, 2, 104–106.CrossRef
5.
go back to reference Tureli, U., Liu, H., & Zoltowskl, M. D. (2000). OFDM blind carrier offset estimation: ESPRIT. IEEE Transactions on Communications, 48, 1459–1461.CrossRef Tureli, U., Liu, H., & Zoltowskl, M. D. (2000). OFDM blind carrier offset estimation: ESPRIT. IEEE Transactions on Communications, 48, 1459–1461.CrossRef
6.
go back to reference Yao, Y., & Giannakis, G. (2005). Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems. IEEE Transactions on Communications, 53(1), 173–183.CrossRefMathSciNet Yao, Y., & Giannakis, G. (2005). Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems. IEEE Transactions on Communications, 53(1), 173–183.CrossRefMathSciNet
7.
go back to reference Ghogho, M., & Swami, A. (2002). Blind frequency-offset estimator for OFDM systems transmitting constant-modulus symbols. IEEE Communications Letters, 6(8), 343–345.CrossRef Ghogho, M., & Swami, A. (2002). Blind frequency-offset estimator for OFDM systems transmitting constant-modulus symbols. IEEE Communications Letters, 6(8), 343–345.CrossRef
8.
go back to reference Park, B., Cheon, H., Ko, E., Kang, C., & Hong, D. (2004). A blind OFDM synchronization algorithm based on cyclic correlation. IEEE Signal Processing Letters, 11(2), 83–85.CrossRef Park, B., Cheon, H., Ko, E., Kang, C., & Hong, D. (2004). A blind OFDM synchronization algorithm based on cyclic correlation. IEEE Signal Processing Letters, 11(2), 83–85.CrossRef
9.
go back to reference Tureli, U., Honan, P. J., & Liu, H. (2004). Low-complexity nonlinear least squares carrier offset estimator for OFDM: Identifiability, diversity and performance. IEEE Transactions on Signal Processing, 52(9), 2441–2452.CrossRef Tureli, U., Honan, P. J., & Liu, H. (2004). Low-complexity nonlinear least squares carrier offset estimator for OFDM: Identifiability, diversity and performance. IEEE Transactions on Signal Processing, 52(9), 2441–2452.CrossRef
10.
go back to reference Hutter, A., Hammerschmidt, J. S., de Carvalho, E., Cioffi, J. M. (2000). “Receive diversity for mobile OFDM systems”. In Proceedings of IEEE WCNC, 2000, pp. 707–712. Hutter, A., Hammerschmidt, J. S., de Carvalho, E., Cioffi, J. M. (2000). “Receive diversity for mobile OFDM systems”. In Proceedings of IEEE WCNC, 2000, pp. 707–712.
11.
go back to reference Zhang, X., Gao, X., & Wang, D. (2010). Blind carrier frequency offset estimation for OFDM system with multiple antennas using multiple-invariance properties. Wireless Personal Communications, 53, 603–612.CrossRef Zhang, X., Gao, X., & Wang, D. (2010). Blind carrier frequency offset estimation for OFDM system with multiple antennas using multiple-invariance properties. Wireless Personal Communications, 53, 603–612.CrossRef
12.
go back to reference Zhang, Xiaofei, Lingyun, Xu, & Dazhuan, Xu. (2012). Multiple invariance MUSIC-based blind carrier frequency offset estimation for OFDM system with multi-antenna receiver. Wireless Personal Communications, 63, 319–330.CrossRef Zhang, Xiaofei, Lingyun, Xu, & Dazhuan, Xu. (2012). Multiple invariance MUSIC-based blind carrier frequency offset estimation for OFDM system with multi-antenna receiver. Wireless Personal Communications, 63, 319–330.CrossRef
13.
go back to reference Zhang, X., Gao, X., & Xu, D. (2010). Novel blind carrier frequency offset estimation for OFDM system with multiple antennas. IEEE Transactions on Wireless Communications, 9, 881–885.CrossRef Zhang, X., Gao, X., & Xu, D. (2010). Novel blind carrier frequency offset estimation for OFDM system with multiple antennas. IEEE Transactions on Wireless Communications, 9, 881–885.CrossRef
14.
go back to reference De Lathauwer, L. (2006). A link between the canonical decomposition in multi-linear algebra and simultaneous matrix diagonalization. SIAM Journal on Matrix Analysis and Applications, 28(3), 642–666.CrossRefMATHMathSciNet De Lathauwer, L. (2006). A link between the canonical decomposition in multi-linear algebra and simultaneous matrix diagonalization. SIAM Journal on Matrix Analysis and Applications, 28(3), 642–666.CrossRefMATHMathSciNet
16.
go back to reference Candes, E., Romberg, J., & Tao, J. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.CrossRefMATHMathSciNet Candes, E., Romberg, J., & Tao, J. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.CrossRefMATHMathSciNet
17.
go back to reference Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.CrossRefMathSciNet Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.CrossRefMathSciNet
18.
go back to reference Mallat, S. G., & Zhang, Z. F. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.CrossRefMATH Mallat, S. G., & Zhang, Z. F. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.CrossRefMATH
19.
go back to reference Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.CrossRefMATHMathSciNet Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.CrossRefMATHMathSciNet
20.
go back to reference Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.CrossRefMathSciNet Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.CrossRefMathSciNet
21.
go back to reference Hu, N., Ye, Z., Xu, D., & Cao, S. (2012). A sparse recovery algorithm for DOA estimation using weighted subspace fitting. Signal Processing, 92, 2566–2570.CrossRef Hu, N., Ye, Z., Xu, D., & Cao, S. (2012). A sparse recovery algorithm for DOA estimation using weighted subspace fitting. Signal Processing, 92, 2566–2570.CrossRef
22.
go back to reference Sidiropoulos, N. D., & Kyrillidis, A. (2012). Multi-way compressed sensing for sparse low-rank tensors. IEEE Signal Processing Letters, 19(11), 757–760.CrossRef Sidiropoulos, N. D., & Kyrillidis, A. (2012). Multi-way compressed sensing for sparse low-rank tensors. IEEE Signal Processing Letters, 19(11), 757–760.CrossRef
23.
go back to reference Zhang, X., & Yu, H. (2013). Blind signal detection for uniform rectangular array via compressive sensing trilinear model. Advanced Materials Research, 756–759, 660. Zhang, X., & Yu, H. (2013). Blind signal detection for uniform rectangular array via compressive sensing trilinear model. Advanced Materials Research, 756–759, 660.
24.
go back to reference Cao, R., Zhang, X., & Chen, W. Compressed sensing parallel factor analysis-based joint angle and Doppler frequency estimation for monostatic multiple-input-multiple-output radar, IET Radar, Sonar & Navigation. doi:10.1049/iet-rsn.2013.0242. Cao, R., Zhang, X., & Chen, W. Compressed sensing parallel factor analysis-based joint angle and Doppler frequency estimation for monostatic multiple-input-multiple-output radar, IET Radar, Sonar & Navigation. doi:10.​1049/​iet-rsn.​2013.​0242.
25.
go back to reference Georg, T., & H. Franz (2008). A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots. In Proceedings of IEEE ICASSP-08 (pp. 2885–2888). Las Vegas, NV. Georg, T., & H. Franz (2008). A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots. In Proceedings of IEEE ICASSP-08 (pp. 2885–2888). Las Vegas, NV.
26.
go back to reference Peng, Y. X., Yang, X., Zhang, X. F., Wang, W. B., & Wu, B. (2010). Compressed MIMO-OFDM channel estimation. In Proceedings fo IEEE Communication Technology (ICCT), Beijing Univ. of Posts & Telecommun., (pp. 1291–1294). Beijing, China. Peng, Y. X., Yang, X., Zhang, X. F., Wang, W. B., & Wu, B. (2010). Compressed MIMO-OFDM channel estimation. In Proceedings fo IEEE Communication Technology (ICCT), Beijing Univ. of Posts & Telecommun., (pp. 1291–1294). Beijing, China.
27.
go back to reference Christian, R. B., Zhou, S. L., James, C. P., & Peter, W. (2010). Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Transactions on Signal Processing, 58(3), 1708–1720.CrossRefMathSciNet Christian, R. B., Zhou, S. L., James, C. P., & Peter, W. (2010). Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Transactions on Signal Processing, 58(3), 1708–1720.CrossRefMathSciNet
28.
go back to reference Jarvis, H., Waheed, U. B., Gil, R., & Robert, N. (2010). Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation. IEEE Transactions on Signal Processing, 56(11), 5862–5875. Jarvis, H., Waheed, U. B., Gil, R., & Robert, N. (2010). Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation. IEEE Transactions on Signal Processing, 56(11), 5862–5875.
29.
go back to reference Joao, G., Christian, R. B., & Antonio, S. (2011). Demodulation of underwater OFDM transmissions by time reversal and basis pursuit methods. In Wireless Conference Sustainable Wireless Technologies, 11th European (pp. 1–9). Vienna, Austria. Joao, G., Christian, R. B., & Antonio, S. (2011). Demodulation of underwater OFDM transmissions by time reversal and basis pursuit methods. In Wireless Conference Sustainable Wireless Technologies, 11th European (pp. 1–9). Vienna, Austria.
30.
go back to reference Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions with application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18, 95–138.CrossRefMATHMathSciNet Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions with application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18, 95–138.CrossRefMATHMathSciNet
31.
go back to reference Bro, R., Sidiropoulos, N. D., & Giannakis, G. B. (1999). A fast least squares algorithm for separating trilinear mixtures. In Proceedings of International Workshop Independent Component Analysis and Blind Signal Separation (pp. 289–294). Aussois, France. Bro, R., Sidiropoulos, N. D., & Giannakis, G. B. (1999). A fast least squares algorithm for separating trilinear mixtures. In Proceedings of International Workshop Independent Component Analysis and Blind Signal Separation (pp. 289–294). Aussois, France.
32.
go back to reference Tomasi, G., & Bro, R. (2006). A comparison of algorithms for fitting the PARAFAC model. Computational Statistics & Data Analysis, 50, 1700–1734.CrossRefMATHMathSciNet Tomasi, G., & Bro, R. (2006). A comparison of algorithms for fitting the PARAFAC model. Computational Statistics & Data Analysis, 50, 1700–1734.CrossRefMATHMathSciNet
33.
go back to reference Vorobyov, S. A., Rong, Y., Sidiropoulos, N. D., & Gershman, A. B. (2005). Robust iterative. Fitting of multilinear models. IEEE Transactions on Signal Processing, 53(8), 2678–2689.CrossRefMathSciNet Vorobyov, S. A., Rong, Y., Sidiropoulos, N. D., & Gershman, A. B. (2005). Robust iterative. Fitting of multilinear models. IEEE Transactions on Signal Processing, 53(8), 2678–2689.CrossRefMathSciNet
34.
go back to reference Stoica, P., & Nehorai, A. (1990). Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Signal Processing, 38, 1783–1795.MATH Stoica, P., & Nehorai, A. (1990). Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Signal Processing, 38, 1783–1795.MATH
Metadata
Title
Compressed Sensing Trilinear Model-Based Blind Carrier Frequency Offset Estimation for OFDM System with Multiple Antennas
Authors
Xiaofei Zhang
Wei Wu
Renzheng Cao
Publication date
01-09-2014
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2014
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-014-1794-z

Other articles of this Issue 2/2014

Wireless Personal Communications 2/2014 Go to the issue