Skip to main content
Top

2016 | OriginalPaper | Chapter

Computation of High Reynolds Number Equilibrium and Nonequilibrium Turbulent Wall-Bounded Flows Using a Nested LES Approach

Authors : Yifeng Tang, Rayhaneh Akhavan

Published in: Progress in Wall Turbulence 2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new nested LES approach for computing high Reynolds number, wall-bounded turbulent flows is presented. The method is based on nested LES of the full-domain at coarse resolution, coupled with well-resolved LES of a minimal flow unit. The coupling between the two domains is achieved by renormalizing the kinetic energies of components of the mean velocity and the turbulent velocity fluctuations in both domains to that of the minimal flow unit in the near-wall region, and to that of the full-size domain in the outer region, at each time-step. The method can be implemented with a fixed number of grid points, independent of Reynolds number, in any given geometry, and is applicable to both equilibrium and nonequilibrium flows. The proposed method has been applied to LES of equilibrium turbulent channel flow at \(1000\le Re_\tau \le 10{,}000\) and LES of nonequilibrium, shear-driven, three-dimensional turbulent channel flow at \(Re_\tau \simeq 2000\). All computations were performed using a spectral patching collocation method, and employed resolutions of \(64\times 64\times 17/33/17\) in the full-size domain (\(L_x \times L_y = 2\pi \times \pi \)), and resolutions of \(32 \times 64 \times 17/33/17\) and \(64 \times 64 \times 17/33/17\) the minimal flow units (\(l_x^+ \,\times \, l_y^+ \approx 3200 \times 1600 \)) of equilibrium and non-equilibrium channel flows, respectively. The dynamic Smagorinsky model with spectral cutoff filter was used as the SGS model in all the simulations. The results show that the proposed nested LES approach can predict the friction coefficient to within 5 % of Dean’s correlation in equilibrium turbulent channel flow, and the one-point turbulence statistics in good agreement with DNS and experimental data in turbulent channel flow and in shear-driven, three-dimensional turbulent boundary layer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Balaras, C. Benocci, U. Piomelli, Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34(6), 1111–1119 (1996)CrossRefMATH E. Balaras, C. Benocci, U. Piomelli, Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34(6), 1111–1119 (1996)CrossRefMATH
2.
go back to reference W. Cabot, P. Moin, Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63(1), 269–291 (1999) W. Cabot, P. Moin, Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63(1), 269–291 (1999)
3.
go back to reference C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral methods: evolution to complex geometries and applications to fluid dynamics (Springer, Berlin, 2007) C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral methods: evolution to complex geometries and applications to fluid dynamics (Springer, Berlin, 2007)
4.
go back to reference D.R. Chapman, Computational aerodynamics, development and outlook. AIAA J. 17(12), 1293–1313 (1979)CrossRefMATH D.R. Chapman, Computational aerodynamics, development and outlook. AIAA J. 17(12), 1293–1313 (1979)CrossRefMATH
5.
6.
go back to reference G. Comte-Bellot, Turbulent flow between two parallel walls. Ph.D thesis, University of Grenoble (1963) G. Comte-Bellot, Turbulent flow between two parallel walls. Ph.D thesis, University of Grenoble (1963)
7.
go back to reference R.B. Dean, Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Eng. 100(2), 215–223 (1978)CrossRef R.B. Dean, Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Eng. 100(2), 215–223 (1978)CrossRef
8.
go back to reference J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453 (1970)CrossRefMATH J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453 (1970)CrossRefMATH
9.
go back to reference J.C. del Álamo, J. Jimenez, P. Zandonade, R.D. Moser, Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004)CrossRefMATH J.C. del Álamo, J. Jimenez, P. Zandonade, R.D. Moser, Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004)CrossRefMATH
10.
go back to reference D.M. Driver, S.K. Hebbar, Three-dimensional turbulent boundary layer flow over a spinning cylinder. NASA Technical Memorandum 102240 (1991) D.M. Driver, S.K. Hebbar, Three-dimensional turbulent boundary layer flow over a spinning cylinder. NASA Technical Memorandum 102240 (1991)
11.
go back to reference O. Flores, J. Jimenez, Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22(7), 071704 (2010)CrossRef O. Flores, J. Jimenez, Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22(7), 071704 (2010)CrossRef
12.
go back to reference M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)CrossRefMATH M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)CrossRefMATH
13.
go back to reference G. Hoffmann, C. Benocci, Approximate wall boundary conditions for large eddy simulations, in Advances in Turbulence V, ed. by R. Benzi (Kluwer, Dordrecht, 1995), pp. 222–228CrossRef G. Hoffmann, C. Benocci, Approximate wall boundary conditions for large eddy simulations, in Advances in Turbulence V, ed. by R. Benzi (Kluwer, Dordrecht, 1995), pp. 222–228CrossRef
14.
go back to reference S. Hoyas, J. Jimenez, Scaling of the velocity fluctuations in turbulent channels up to Re-tau \(=\) 2003. Phys. Fluids 18(1), 011702 (2006)CrossRef S. Hoyas, J. Jimenez, Scaling of the velocity fluctuations in turbulent channels up to Re-tau \(=\) 2003. Phys. Fluids 18(1), 011702 (2006)CrossRef
15.
go back to reference N. Hutchins, I. Marusic, Large-scale influences in near-wall turbulence. Philos. Trans. R. Soc. A 365(1852), 647–664 (2007)CrossRefMATH N. Hutchins, I. Marusic, Large-scale influences in near-wall turbulence. Philos. Trans. R. Soc. A 365(1852), 647–664 (2007)CrossRefMATH
16.
go back to reference Y.Y. Hwang, Near-wall turbulent fluctuations in the absence of wide outer motions. J. Fluid Mech. 723, 264–288 (2013)CrossRefMATH Y.Y. Hwang, Near-wall turbulent fluctuations in the absence of wide outer motions. J. Fluid Mech. 723, 264–288 (2013)CrossRefMATH
17.
go back to reference J. Jimenez, P. Moin, The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240 (1991)CrossRefMATH J. Jimenez, P. Moin, The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240 (1991)CrossRefMATH
19.
go back to reference J. Jimenez, Computing high-Reynolds-number turbulence: will simulations ever replace experiments? J. Turbul. 4, N22 (2003)CrossRef J. Jimenez, Computing high-Reynolds-number turbulence: will simulations ever replace experiments? J. Turbul. 4, N22 (2003)CrossRef
20.
go back to reference J. Jimenez, S. Hoyas, Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215–236 (2008)CrossRefMATH J. Jimenez, S. Hoyas, Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215–236 (2008)CrossRefMATH
21.
go back to reference D.K. Lilly, A proposed modification of the Germano-subgrid-scale closure method. Phys. Fluids A 4(3), 633–635 (1992)MathSciNetCrossRef D.K. Lilly, A proposed modification of the Germano-subgrid-scale closure method. Phys. Fluids A 4(3), 633–635 (1992)MathSciNetCrossRef
22.
go back to reference I. Marusic, W.D.C. Heuer, Reynolds number invariance of the structure inclination angle in wall turbulence. Phys. Rev. Lett. 99(11), 114504 (2007)CrossRef I. Marusic, W.D.C. Heuer, Reynolds number invariance of the structure inclination angle in wall turbulence. Phys. Rev. Lett. 99(11), 114504 (2007)CrossRef
23.
go back to reference I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22(6), 065103 (2010)CrossRef I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22(6), 065103 (2010)CrossRef
24.
go back to reference R. Mathis, N. Hutchins, I. Marusic, Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)CrossRefMATH R. Mathis, N. Hutchins, I. Marusic, Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)CrossRefMATH
25.
go back to reference F.R. Menter, Y. Egorov, A scale-adaptive simulation model using two-equation models. AIAA paper 2005-1095 (2005) F.R. Menter, Y. Egorov, A scale-adaptive simulation model using two-equation models. AIAA paper 2005-1095 (2005)
26.
go back to reference N.V. Nikitin, F. Nicoud, B. Wasistho, K.D. Squires, P.R. Spalart, An approach to wall modeling in large-eddy simulations. Phys. Fluids 12(7), 1629–1632 (2000)CrossRef N.V. Nikitin, F. Nicoud, B. Wasistho, K.D. Squires, P.R. Spalart, An approach to wall modeling in large-eddy simulations. Phys. Fluids 12(7), 1629–1632 (2000)CrossRef
27.
go back to reference U. Piomelli, Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44(6), 437–446 (2008)CrossRef U. Piomelli, Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44(6), 437–446 (2008)CrossRef
28.
go back to reference S.K. Robinson, Coherent motions in the turbulent boundary-layer. Annu. Rev. Fluid Mech. 23, 601–639 (1991)CrossRef S.K. Robinson, Coherent motions in the turbulent boundary-layer. Annu. Rev. Fluid Mech. 23, 601–639 (1991)CrossRef
29.
go back to reference P. Sagaut, S. Deck, Large eddy simulation for aerodynamics: status and perspectives. Philos. Trans. R. Soc. A 367(1899), 2849–2860 (2009)CrossRefMATH P. Sagaut, S. Deck, Large eddy simulation for aerodynamics: status and perspectives. Philos. Trans. R. Soc. A 367(1899), 2849–2860 (2009)CrossRefMATH
30.
go back to reference U. Schumann, Subgrid scale model for finite-difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18(4), 376–404 (1975)MathSciNetCrossRefMATH U. Schumann, Subgrid scale model for finite-difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18(4), 376–404 (1975)MathSciNetCrossRefMATH
31.
go back to reference A.J. Smits, B.J. McKeon, I. Marusic, High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)CrossRef A.J. Smits, B.J. McKeon, I. Marusic, High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)CrossRef
32.
go back to reference P.R. Spalart, W.H. Jou, M. Strelets, S.R. Allmaras, Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Proceedings of 1st AFOSR International Conference on DNS/LES, Ruston (1997), pp. 137–147 P.R. Spalart, W.H. Jou, M. Strelets, S.R. Allmaras, Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Proceedings of 1st AFOSR International Conference on DNS/LES, Ruston (1997), pp. 137–147
33.
go back to reference Y. Tang, R. Akhavan, Recovery of subgrid-scale turbulence kinetic energy in LES of channel flow, in Advances in Turbulence XII, ed. by B. Eckhardt (Springer, Berlin, 2009), p. 949CrossRef Y. Tang, R. Akhavan, Recovery of subgrid-scale turbulence kinetic energy in LES of channel flow, in Advances in Turbulence XII, ed. by B. Eckhardt (Springer, Berlin, 2009), p. 949CrossRef
35.
go back to reference A.A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1976)MATH A.A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1976)MATH
36.
go back to reference G.S. Winckelmans, H. Jeanmart, D. Carati, On the comparison of turbulence intensities from large-eddy simulation with those from experiment or direct numerical simulation. Phys. Fluids 14(5), 1809–1811 (2002)CrossRef G.S. Winckelmans, H. Jeanmart, D. Carati, On the comparison of turbulence intensities from large-eddy simulation with those from experiment or direct numerical simulation. Phys. Fluids 14(5), 1809–1811 (2002)CrossRef
Metadata
Title
Computation of High Reynolds Number Equilibrium and Nonequilibrium Turbulent Wall-Bounded Flows Using a Nested LES Approach
Authors
Yifeng Tang
Rayhaneh Akhavan
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-20388-1_11

Premium Partners