Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2014

01-08-2014

Computation of the Green’s function for the transverse vibration of a composite circular membrane

Authors: V. G. Yakhno, D. Ozdek

Published in: Journal of Engineering Mathematics | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new analytical method is suggested for the approximate computation of the time-dependent Green’s function for the equations of the transverse vibration of a composite circular membrane with piecewise constant varying density and tension. The method is based on the derivation of eigenvalues and eigenfunctions for an ordinary differential equation with piecewise constant coefficients and an approximate computation of the Green’s function in the form of the Fourier series with a finite number of terms relative to the orthogonal set of the derived eigenfunctions. A computational experiment confirms the robustness of the method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Feng B, Gan RZ (2004) Lumped parametric model of the human ear for sound transmission. Biomech Model Mechanobiol 3:33–47CrossRef Feng B, Gan RZ (2004) Lumped parametric model of the human ear for sound transmission. Biomech Model Mechanobiol 3:33–47CrossRef
2.
go back to reference Sosa M, Carneiro AAO, Colafemina JF, Baffa O (2001) A new magnetic probe to study the vibration of the tympanic membrane. J Magn Magn Mater 226–230:2067–2069 Sosa M, Carneiro AAO, Colafemina JF, Baffa O (2001) A new magnetic probe to study the vibration of the tympanic membrane. J Magn Magn Mater 226–230:2067–2069
3.
go back to reference Aernouts J, Couckuyt I, Crombecq K, Dirckx JJJ (2010) Elastic characterization of membranes with a complex shape using point indentation measurements and inverse modelling. Int J Eng Sci 48:599–611CrossRef Aernouts J, Couckuyt I, Crombecq K, Dirckx JJJ (2010) Elastic characterization of membranes with a complex shape using point indentation measurements and inverse modelling. Int J Eng Sci 48:599–611CrossRef
4.
go back to reference Tack JW, Verkerke GJ, VanderHouwen EB, Mahieu HF, Schutte HK (2006) Development of a double-membrane sound generator for application in a voice-producing element for laryngectomized patients. Ann Biomed Eng 34:1896–1907CrossRef Tack JW, Verkerke GJ, VanderHouwen EB, Mahieu HF, Schutte HK (2006) Development of a double-membrane sound generator for application in a voice-producing element for laryngectomized patients. Ann Biomed Eng 34:1896–1907CrossRef
5.
6.
go back to reference Batra RC, Porfiri M, Spinello D (2006) Analysis of electrostatic MEMS using meshless local Petrov Galerkin (MLPG) method. Eng Anal Bound Elem 30:949–962CrossRefMATH Batra RC, Porfiri M, Spinello D (2006) Analysis of electrostatic MEMS using meshless local Petrov Galerkin (MLPG) method. Eng Anal Bound Elem 30:949–962CrossRefMATH
8.
go back to reference Wan KT, Guo S, Dillard DA (2003) A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425:150–162ADSCrossRef Wan KT, Guo S, Dillard DA (2003) A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425:150–162ADSCrossRef
9.
go back to reference Komaragiri U, Begley MR, Simmonds JG (2005) The mechanical response of freestanding circular elastic films under point and pressure loads. J Appl Mech 72:203–212CrossRefMATH Komaragiri U, Begley MR, Simmonds JG (2005) The mechanical response of freestanding circular elastic films under point and pressure loads. J Appl Mech 72:203–212CrossRefMATH
10.
go back to reference Ruggiero EJ, Inman DJ (2009) Modeling and vibration control of an active membrane mirror. Smart Mater Struct 18:095027ADSCrossRef Ruggiero EJ, Inman DJ (2009) Modeling and vibration control of an active membrane mirror. Smart Mater Struct 18:095027ADSCrossRef
11.
go back to reference Jenkins CHM (2001) Gossamer spacecraft: membrane and inflatable structures technology for space applications, vol 191. American Institute of Aeronautics and Astronautics, Reston Jenkins CHM (2001) Gossamer spacecraft: membrane and inflatable structures technology for space applications, vol 191. American Institute of Aeronautics and Astronautics, Reston
12.
13.
go back to reference Gutierrez RH, Laura PAA, Bambill DV, Jederlinic VA (1998) Axisymmetric vibrations of solid and circular and annular membranes with continuously varying density. J Sound Vib 212:611–622ADSCrossRef Gutierrez RH, Laura PAA, Bambill DV, Jederlinic VA (1998) Axisymmetric vibrations of solid and circular and annular membranes with continuously varying density. J Sound Vib 212:611–622ADSCrossRef
14.
go back to reference Laura PAA, Bambill DV, Gutierrez RH (1997) A note on transverse vibrations of circular, annular, composite membranes. J Sound Vib 205:692–697ADSCrossRef Laura PAA, Bambill DV, Gutierrez RH (1997) A note on transverse vibrations of circular, annular, composite membranes. J Sound Vib 205:692–697ADSCrossRef
15.
go back to reference Buchanan GH (2005) Vibration of circular membranes with linearly varying density along a diameter. J Sound Vib 280:407–414ADSCrossRef Buchanan GH (2005) Vibration of circular membranes with linearly varying density along a diameter. J Sound Vib 280:407–414ADSCrossRef
16.
go back to reference Jabareen M, Eisenberger M (2001) Free vibrations of non-homogeneous circular and annular membranes. J Sound Vib 240:409–429ADSCrossRef Jabareen M, Eisenberger M (2001) Free vibrations of non-homogeneous circular and annular membranes. J Sound Vib 240:409–429ADSCrossRef
17.
go back to reference Willatzen M (2002) Exact power series solutions for axisymmetric vibrations of circular and annular membranes with continuously varying density in the general case. J Sound Vib 258:981–986ADSCrossRef Willatzen M (2002) Exact power series solutions for axisymmetric vibrations of circular and annular membranes with continuously varying density in the general case. J Sound Vib 258:981–986ADSCrossRef
18.
go back to reference Cap FF (2001) Eigenfrequencies of membranes of arbitrary boundary and with varying surface mass density. Appl Math Comput 124:319–329CrossRefMATHMathSciNet Cap FF (2001) Eigenfrequencies of membranes of arbitrary boundary and with varying surface mass density. Appl Math Comput 124:319–329CrossRefMATHMathSciNet
19.
go back to reference Courant D, Hilbert D (1953) Methods of mathematical physics. Wiley, New York Courant D, Hilbert D (1953) Methods of mathematical physics. Wiley, New York
20.
go back to reference Vladimirov VS (1971) Equations of mathematical physics. Marcel Dekker, New York Vladimirov VS (1971) Equations of mathematical physics. Marcel Dekker, New York
21.
go back to reference Wang CY, Achenbach JD, Hirose S (1994) Elastodynamic fundamental solutions for anisotropic solids. Geophys J Int 118:384–392ADSCrossRef Wang CY, Achenbach JD, Hirose S (1994) Elastodynamic fundamental solutions for anisotropic solids. Geophys J Int 118:384–392ADSCrossRef
22.
go back to reference Tewary VK (1995) Computationally efficient representation for elastodynamic and elastostatic Green’s functions for anisotropic solids. Phys Rev B 51:15695–15702ADSCrossRef Tewary VK (1995) Computationally efficient representation for elastodynamic and elastostatic Green’s functions for anisotropic solids. Phys Rev B 51:15695–15702ADSCrossRef
23.
24.
go back to reference Beskos DE (1997) Boundary element methods in dynamic analysis: part II. Appl Mech Rev 50:149–197ADSCrossRef Beskos DE (1997) Boundary element methods in dynamic analysis: part II. Appl Mech Rev 50:149–197ADSCrossRef
25.
go back to reference Wang CY, Achenbach JD, Hirose S (1996) Two-dimensional time domain BEM for scattering of elastic waves in solids of general anisotropy. Int J Solids Struct 33:3843–3864CrossRefMATHMathSciNet Wang CY, Achenbach JD, Hirose S (1996) Two-dimensional time domain BEM for scattering of elastic waves in solids of general anisotropy. Int J Solids Struct 33:3843–3864CrossRefMATHMathSciNet
26.
go back to reference Albuquerque EL, Sollero P, Aliabadi MH (2002) The boundary element method applied to time dependent problems in anisotropic materials. Int J Solids Struct 39:1405–1422CrossRefMATH Albuquerque EL, Sollero P, Aliabadi MH (2002) The boundary element method applied to time dependent problems in anisotropic materials. Int J Solids Struct 39:1405–1422CrossRefMATH
27.
go back to reference Katsikadelis JT, Yiotis AJ (2003) The BEM for plates of variable thickness on nonlinear biparametric elastic foundation: an analog equation solution. J Eng Math 46:313–330CrossRefMATH Katsikadelis JT, Yiotis AJ (2003) The BEM for plates of variable thickness on nonlinear biparametric elastic foundation: an analog equation solution. J Eng Math 46:313–330CrossRefMATH
28.
go back to reference Tan A, Hirose S, Zhang Ch, Wang CY (2005) A 2D time-domain BEM for transient wave scattering analysis by a crack in anisotropic solids. Eng Anal Bound Elem 29:610–623CrossRefMATH Tan A, Hirose S, Zhang Ch, Wang CY (2005) A 2D time-domain BEM for transient wave scattering analysis by a crack in anisotropic solids. Eng Anal Bound Elem 29:610–623CrossRefMATH
29.
go back to reference Diaz-Contreras RE, Nomura S (1996) Green’s function applied to solution of Mindlin plates. Comput Struct 60:41–48CrossRefMATH Diaz-Contreras RE, Nomura S (1996) Green’s function applied to solution of Mindlin plates. Comput Struct 60:41–48CrossRefMATH
30.
go back to reference Sales MA, Gray LJ (1998) Evaluation of the anisotropic Green’s function and its derivatives. Comput Struct 69:247–254CrossRefMATH Sales MA, Gray LJ (1998) Evaluation of the anisotropic Green’s function and its derivatives. Comput Struct 69:247–254CrossRefMATH
31.
go back to reference Tonon F, Pan E, Amadei B (2001) Green’s functions and boundary element method formulation for 3D anisotropic media. Comput Struct 79:469–482CrossRef Tonon F, Pan E, Amadei B (2001) Green’s functions and boundary element method formulation for 3D anisotropic media. Comput Struct 79:469–482CrossRef
32.
go back to reference Morse PM, Feshbach H (1953) Methods of Theoretical Physics. McGraw-Hill, New YorkMATH Morse PM, Feshbach H (1953) Methods of Theoretical Physics. McGraw-Hill, New YorkMATH
33.
go back to reference Yakhno VG, Yaslan HC (2011) Computation of the time-dependent fundamental solution for equations of elastodynamics in general anisotropic media. Comput Struct 89:646–655CrossRef Yakhno VG, Yaslan HC (2011) Computation of the time-dependent fundamental solution for equations of elastodynamics in general anisotropic media. Comput Struct 89:646–655CrossRef
34.
go back to reference Yakhno VG, Yaslan HC (2012) Approximate fundamental solutions and wave fronts for general anisotropic materials. Int J Solids Struct 49:853–864CrossRef Yakhno VG, Yaslan HC (2012) Approximate fundamental solutions and wave fronts for general anisotropic materials. Int J Solids Struct 49:853–864CrossRef
35.
go back to reference Yakhno VG, Ozdek D (2012) Computation of the time-dependent Green’s function for the longitudinal vibration of multi-step rod. CMES Comput Model Eng 85:157–176MathSciNet Yakhno VG, Ozdek D (2012) Computation of the time-dependent Green’s function for the longitudinal vibration of multi-step rod. CMES Comput Model Eng 85:157–176MathSciNet
36.
37.
go back to reference Pan L, Adams DO, Rizzo FJ (1998) Boundary element analysis for composite materials and a library of Green’s functions. Comput Struct 66:685–693CrossRefMATH Pan L, Adams DO, Rizzo FJ (1998) Boundary element analysis for composite materials and a library of Green’s functions. Comput Struct 66:685–693CrossRefMATH
38.
go back to reference Pan E, Yuan FG (2000) Three-dimensional Green’s functions in anisotropic bimaterials. Int J Solids Struct 37:5329–5351CrossRefMATH Pan E, Yuan FG (2000) Three-dimensional Green’s functions in anisotropic bimaterials. Int J Solids Struct 37:5329–5351CrossRefMATH
39.
go back to reference Berger JR, Tewary VK (2001) Greens functions for boundary element analysis of anisotropic bimaterials. Eng Anal Bound Elem 25:279–288CrossRefMATH Berger JR, Tewary VK (2001) Greens functions for boundary element analysis of anisotropic bimaterials. Eng Anal Bound Elem 25:279–288CrossRefMATH
40.
go back to reference Haojiang D, Aimin J (2004) A boundary integral formulation and solution for 2D problems in magneto-electro-elastic media. Comput Struct 82:1599–1607CrossRef Haojiang D, Aimin J (2004) A boundary integral formulation and solution for 2D problems in magneto-electro-elastic media. Comput Struct 82:1599–1607CrossRef
41.
42.
43.
go back to reference Rashed YF (2004) Green’s first identity method for boundary-only solution of self-weight in BEM formulation for thick slabs. CMC Comput Mater Con 1:319–326MATH Rashed YF (2004) Green’s first identity method for boundary-only solution of self-weight in BEM formulation for thick slabs. CMC Comput Mater Con 1:319–326MATH
44.
go back to reference Ting TCT (2005) Green’s functions for a bimaterial consisting of two orthotropic quarter planes subjected to an antiplane force and a secrew dislocation. Math Mech Solids 10:197–211CrossRefMATHMathSciNet Ting TCT (2005) Green’s functions for a bimaterial consisting of two orthotropic quarter planes subjected to an antiplane force and a secrew dislocation. Math Mech Solids 10:197–211CrossRefMATHMathSciNet
45.
go back to reference Yang B, Tewary VK (2008) Green’s function for multilayered with interfacial membrane and flexural rigidities. CMC Comput Mater Con 8:23–31 Yang B, Tewary VK (2008) Green’s function for multilayered with interfacial membrane and flexural rigidities. CMC Comput Mater Con 8:23–31
46.
go back to reference Gu MH, Young DL, Fan CM (2009) The method of fundamental solutions for one-dimensional wave eqautions. CMC Comput Mater Con 11:185–208 Gu MH, Young DL, Fan CM (2009) The method of fundamental solutions for one-dimensional wave eqautions. CMC Comput Mater Con 11:185–208
47.
go back to reference Yakhno VG, Yaslan HC (2011) Computation of the time-dependent Green’s function of three dimesional elastodynamics in 3D quasicrytals. CMES Comput Model Eng 81:295–309 Yakhno VG, Yaslan HC (2011) Computation of the time-dependent Green’s function of three dimesional elastodynamics in 3D quasicrytals. CMES Comput Model Eng 81:295–309
48.
go back to reference Yakhno VG (2008) Computing and simulation of time-dependent electromagnetic fields in homogeneous anisotropic materials. Int J Eng Sci 46:411–426CrossRefMATHMathSciNet Yakhno VG (2008) Computing and simulation of time-dependent electromagnetic fields in homogeneous anisotropic materials. Int J Eng Sci 46:411–426CrossRefMATHMathSciNet
49.
go back to reference Kukla S (2011) Green’s function for vibration problems of an elliptical membrane. Sci Res Inst Math Comput Sci 2:129–134 Kukla S (2011) Green’s function for vibration problems of an elliptical membrane. Sci Res Inst Math Comput Sci 2:129–134
50.
go back to reference Perez-Arancibia C, Duran M (2010) On the Green’s function for the Helmholtz operator in an impedance circular cylindrical waveguide. J Comput Appl Math 235:244–262CrossRefMATHMathSciNet Perez-Arancibia C, Duran M (2010) On the Green’s function for the Helmholtz operator in an impedance circular cylindrical waveguide. J Comput Appl Math 235:244–262CrossRefMATHMathSciNet
51.
go back to reference Zachmanoglu EC, Thoe DW (1986) Introduction to partial differential equations with applications. Dover Publications, New York Zachmanoglu EC, Thoe DW (1986) Introduction to partial differential equations with applications. Dover Publications, New York
52.
go back to reference Brown JW, Churchill RV (1993) Fourier series and boundary value problems. McGraw-Hill, New York Brown JW, Churchill RV (1993) Fourier series and boundary value problems. McGraw-Hill, New York
53.
go back to reference Folland GB (1992) Fourier analysis and its applications. Wadsworth & Brooks/Cole, USAMATH Folland GB (1992) Fourier analysis and its applications. Wadsworth & Brooks/Cole, USAMATH
54.
go back to reference Tolstov GP (2001) Fourier series. Dover Publications, New York Tolstov GP (2001) Fourier series. Dover Publications, New York
55.
go back to reference South J, Blass B (2001) The future of modern genomics. Blackwell, London South J, Blass B (2001) The future of modern genomics. Blackwell, London
56.
go back to reference Faydaoglu S, Guseinov GSh (2003) Eigenfunction expansion for a Sturm–Liouville boundary value problem with impulse. Int J Pure Appl Math 8:137–170MATHMathSciNet Faydaoglu S, Guseinov GSh (2003) Eigenfunction expansion for a Sturm–Liouville boundary value problem with impulse. Int J Pure Appl Math 8:137–170MATHMathSciNet
Metadata
Title
Computation of the Green’s function for the transverse vibration of a composite circular membrane
Authors
V. G. Yakhno
D. Ozdek
Publication date
01-08-2014
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2014
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-013-9673-2

Other articles of this Issue 1/2014

Journal of Engineering Mathematics 1/2014 Go to the issue

Premium Partners