Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 2/2020

22-11-2019 | Research Article - Mechanical Engineering

Computational Analysis of Unsteady Swirling Flow Around a Decelerating Rotating Porous Disk in Nanofluid

Authors: Talat Rafiq, M. Mustafa

Published in: Arabian Journal for Science and Engineering | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Here, we analyze the unsteady nanofluid flow triggered around a decelerating (permeable) rotating disk immersed in an otherwise calm environment. The present model assumes that disk angular velocity follows inversely linear time dependency. By following a similarity approach, the distributions of velocity and thermal fields above the disk are estimated numerically for six nanoparticle materials, namely Ag, Cu, CuO, Fe3O4, TiO2 and Al2O3. The solutions involve a dimensionless parameter \(S\) measuring the decay rate of the disk angular velocity. We primarily focus on how solid volume fraction affects the key physical attributes, namely resisting torque, volumetric flow rate and cooling rate when unsteady action of the disk is present. Similar to pure fluid flow, there exists a critical unsteady parameter \(S = S^{*}\) which corresponds to the free disk requiring no torque. For some range of \(S\), flow field surrounding the disk revolves faster than the disk itself. Similar to the steady-state case, suction seems to contribute vitally toward heat transfer enhancement of nanoparticle working fluid. Radial and circular motions around the disk diminish, and axial velocity becomes uniform when disk is subjected to sufficient amount of suction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference von-Kármán, T.: Uber laminare and turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)MATH von-Kármán, T.: Uber laminare and turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)MATH
2.
go back to reference Cochran, W.G.: The flow due to a rotating disc. Math. Proc. Camb. Philos. Soc. 30, 365–375 (1934)MATH Cochran, W.G.: The flow due to a rotating disc. Math. Proc. Camb. Philos. Soc. 30, 365–375 (1934)MATH
3.
go back to reference Benton, E.R.: On the flow due to a rotating disk. J. Fluid Mech. 24, 781–800 (1966)MATH Benton, E.R.: On the flow due to a rotating disk. J. Fluid Mech. 24, 781–800 (1966)MATH
4.
go back to reference McLeod, J.B.: Von Kármán’s swirling flow problem. Arch. Rational Mech. Anal. 33, 91–102 (1969)MathSciNetMATH McLeod, J.B.: Von Kármán’s swirling flow problem. Arch. Rational Mech. Anal. 33, 91–102 (1969)MathSciNetMATH
5.
go back to reference Watson, L.T.; Wang, C.Y.: Deceleration of a rotating disk in a viscous fluid. Phys. Fluids 22, 2267–2269 (1979)MATH Watson, L.T.; Wang, C.Y.: Deceleration of a rotating disk in a viscous fluid. Phys. Fluids 22, 2267–2269 (1979)MATH
6.
go back to reference Zandbergen, P.J.; Dijkstta, D.: Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19, 465–491 (1987) Zandbergen, P.J.; Dijkstta, D.: Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19, 465–491 (1987)
7.
go back to reference Ariel, P.D.: Computation of flow of a second grade fluid near a rotating disk. Int. J. Eng. Sci. 35, 1335–1357 (1997)MathSciNetMATH Ariel, P.D.: Computation of flow of a second grade fluid near a rotating disk. Int. J. Eng. Sci. 35, 1335–1357 (1997)MathSciNetMATH
8.
go back to reference Andersson, H.I.; de Korte, E.: MHD flow of a power-law fluid over a rotating disk. Eur. J. Mech. B/Fluids 21, 317–324 (2002)MATH Andersson, H.I.; de Korte, E.: MHD flow of a power-law fluid over a rotating disk. Eur. J. Mech. B/Fluids 21, 317–324 (2002)MATH
9.
go back to reference Miklavčič, M.; Wang, C.Y.: The flow due to a rough rotating disk. Z. Angew. Math. Phys. 55, 235–246 (2004)MathSciNetMATH Miklavčič, M.; Wang, C.Y.: The flow due to a rough rotating disk. Z. Angew. Math. Phys. 55, 235–246 (2004)MathSciNetMATH
10.
go back to reference Turkyilmazoglu, M.: MHD fluid flow and heat transfer due to a shrinking rotating disk. Comput. Fluids 90, 51–56 (2014)MathSciNetMATH Turkyilmazoglu, M.: MHD fluid flow and heat transfer due to a shrinking rotating disk. Comput. Fluids 90, 51–56 (2014)MathSciNetMATH
11.
go back to reference Griffiths, P.T.: Flow of a generalised Newtonian fluid due to a rotating disk. Non-Newton. Fluid Mech. 221, 9–17 (2015)MathSciNet Griffiths, P.T.: Flow of a generalised Newtonian fluid due to a rotating disk. Non-Newton. Fluid Mech. 221, 9–17 (2015)MathSciNet
12.
go back to reference Mushtaq, A.; Mustafa, M.: Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions. Results Phys. 7, 3137–3144 (2017) Mushtaq, A.; Mustafa, M.: Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions. Results Phys. 7, 3137–3144 (2017)
13.
go back to reference Tabassum, M.; Mustafa, M.: A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk. Int. J. Heat Mass Transf. 123, 979–987 (2018) Tabassum, M.; Mustafa, M.: A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk. Int. J. Heat Mass Transf. 123, 979–987 (2018)
14.
go back to reference Hayat, T.; Khan, M.I.; Qayyum, S.; Khan, M.I.; Alsaedi, A.: Entropy generation for flow of Sisko fluid due to rotating disk. J. Mol. Liq. 264, 375–385 (2018) Hayat, T.; Khan, M.I.; Qayyum, S.; Khan, M.I.; Alsaedi, A.: Entropy generation for flow of Sisko fluid due to rotating disk. J. Mol. Liq. 264, 375–385 (2018)
15.
go back to reference Mehmood, A.; Usman, M.; Weigand, B.: Heat and mass transfer phenomena due to a rotating non-isothermal wavy disk. Int. J. Heat Mass Transf. 129, 96–102 (2019) Mehmood, A.; Usman, M.; Weigand, B.: Heat and mass transfer phenomena due to a rotating non-isothermal wavy disk. Int. J. Heat Mass Transf. 129, 96–102 (2019)
16.
go back to reference Ahmed, J.; Khan, M.; Ahmad, L.: Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J. Mol. Liq. 287, 110–853 (2019) Ahmed, J.; Khan, M.; Ahmad, L.: Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J. Mol. Liq. 287, 110–853 (2019)
17.
19.
go back to reference Das, S.K.; Choi, S.U.S.; Yu, W.; Pradeep, T.: Nanofluids: Science and Technology. Wiley, Hoboken (2007) Das, S.K.; Choi, S.U.S.; Yu, W.; Pradeep, T.: Nanofluids: Science and Technology. Wiley, Hoboken (2007)
20.
go back to reference Wang, X.Q.; Mujumdar, A.S.: A review on nanofluids-part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008) Wang, X.Q.; Mujumdar, A.S.: A review on nanofluids-part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)
21.
go back to reference Kakac, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)MATH Kakac, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)MATH
22.
go back to reference Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57, 582–594 (2013) Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57, 582–594 (2013)
23.
go back to reference Sidik, N.A.C.; Yazid, M.N.A.W.M.; Mamat, R.: A review on the application of nanofluids in vehicle engine cooling system. Int. Commun. Heat Mass Transf. 68, 85–90 (2015) Sidik, N.A.C.; Yazid, M.N.A.W.M.; Mamat, R.: A review on the application of nanofluids in vehicle engine cooling system. Int. Commun. Heat Mass Transf. 68, 85–90 (2015)
24.
go back to reference Tiwari, R.K.; Das, M.K.: Heat transfer augmentation in a two sided lid driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)MATH Tiwari, R.K.; Das, M.K.: Heat transfer augmentation in a two sided lid driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)MATH
25.
go back to reference Turkyilmazoglu, M.; Pop, I.: Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int. J. Heat Mass Transf. 59, 167–171 (2013) Turkyilmazoglu, M.; Pop, I.: Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int. J. Heat Mass Transf. 59, 167–171 (2013)
26.
go back to reference Sheikholeslami, M.; Shehzad, S.A.: Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int. J. Heat Mass Transf. 113, 796–805 (2017) Sheikholeslami, M.; Shehzad, S.A.: Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int. J. Heat Mass Transf. 113, 796–805 (2017)
27.
go back to reference Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Shehzad, S.A.: Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source. Physica E 94, 25–30 (2017) Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Shehzad, S.A.: Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source. Physica E 94, 25–30 (2017)
28.
go back to reference Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Hayat, T.; Alsaedi, A.: Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects. Results Phys. 9, 78–85 (2018) Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Hayat, T.; Alsaedi, A.: Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects. Results Phys. 9, 78–85 (2018)
29.
go back to reference Sheikholeslami, M.: Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 334, 306–318 (2019)MathSciNetMATH Sheikholeslami, M.: Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 334, 306–318 (2019)MathSciNetMATH
30.
go back to reference Rashidi, M.M.; Abelman, S.; Mehr, N.F.: Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int. J. Heat Mass Transf. 62, 515–525 (2013) Rashidi, M.M.; Abelman, S.; Mehr, N.F.: Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int. J. Heat Mass Transf. 62, 515–525 (2013)
31.
go back to reference Seth, G.S.; Kumar, R.; Bhattacharyya, A.: Entropy generation of dissipative flow of carbon nanotubes in rotating frame with Darcy–Forchheimer porous medium: a numerical study. J. Mol. Liq. 268, 637–646 (2018) Seth, G.S.; Kumar, R.; Bhattacharyya, A.: Entropy generation of dissipative flow of carbon nanotubes in rotating frame with Darcy–Forchheimer porous medium: a numerical study. J. Mol. Liq. 268, 637–646 (2018)
32.
go back to reference Hayat, T.; Khan, M.I.; Khan, T.A.; Khan, M.I.; Ahmad, S.; Alsaedi, A.: Entropy generation in Darcy–Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. J. Mole. Liq. 256, 629–638 (2018) Hayat, T.; Khan, M.I.; Khan, T.A.; Khan, M.I.; Ahmad, S.; Alsaedi, A.: Entropy generation in Darcy–Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions. J. Mole. Liq. 256, 629–638 (2018)
33.
go back to reference Mahanthesh, B.; Gireesha, B.J.; Shehzad, S.A.; Rauf, A.; Sampath Kumar, P.B.: Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Physica B 537, 98–104 (2018) Mahanthesh, B.; Gireesha, B.J.; Shehzad, S.A.; Rauf, A.; Sampath Kumar, P.B.: Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Physica B 537, 98–104 (2018)
34.
go back to reference Makinde, O.D.; Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Monaledi, R.L.; Tshehla, M.S.: MHD nanofluid flow past a rotating disk with thermal radiation in the presence of aluminum and titanium alloy nanoparticles. Defect Diffus. Forum 384, 69–79 (2018) Makinde, O.D.; Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Monaledi, R.L.; Tshehla, M.S.: MHD nanofluid flow past a rotating disk with thermal radiation in the presence of aluminum and titanium alloy nanoparticles. Defect Diffus. Forum 384, 69–79 (2018)
35.
go back to reference Mabood, F.; Shateyi, S.; Rashidi, M.M.; Momoniat, E.; Freidoonimehr, N.: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Adv. Powder Technol. 27, 742–749 (2016) Mabood, F.; Shateyi, S.; Rashidi, M.M.; Momoniat, E.; Freidoonimehr, N.: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Adv. Powder Technol. 27, 742–749 (2016)
36.
go back to reference Mabood, F.; Khan, W.A.; Yavanovich, M.M.: Forced convection of nanofluid flow across horizontal circular cylinder with convective boundary condition. J. Mol. Liq. 222, 172–180 (2016) Mabood, F.; Khan, W.A.; Yavanovich, M.M.: Forced convection of nanofluid flow across horizontal circular cylinder with convective boundary condition. J. Mol. Liq. 222, 172–180 (2016)
37.
go back to reference Ahmad, R.; Mustafa, M.: Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet. J. Mol. Liq. 220, 635–641 (2016) Ahmad, R.; Mustafa, M.: Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet. J. Mol. Liq. 220, 635–641 (2016)
38.
go back to reference Tian, X.Y.; Li, B.W.; Hu, Z.M.: Convective stagnation point flow of a MHD non Newtonian nanofluid towards a stretching plate. Int. J. Heat Mass Transf. 127, 768–780 (2018) Tian, X.Y.; Li, B.W.; Hu, Z.M.: Convective stagnation point flow of a MHD non Newtonian nanofluid towards a stretching plate. Int. J. Heat Mass Transf. 127, 768–780 (2018)
39.
go back to reference Grosan, T.; Pop, I.: Axisymmetric mixed convection boundary layer flow past a vertical cylinder in a nanofluid. Int. J. Heat Mass Transf. 54, 3139–3145 (2011)MATH Grosan, T.; Pop, I.: Axisymmetric mixed convection boundary layer flow past a vertical cylinder in a nanofluid. Int. J. Heat Mass Transf. 54, 3139–3145 (2011)MATH
40.
go back to reference Dinarvand, S.; Hosseini, R.; Abdulhasansari, M.; Pop, I.: Buongiorno’s model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluid. Adv. Powder Technol. 26, 1423–1434 (2015) Dinarvand, S.; Hosseini, R.; Abdulhasansari, M.; Pop, I.: Buongiorno’s model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluid. Adv. Powder Technol. 26, 1423–1434 (2015)
41.
go back to reference Dinarvand, S.; Hosseini, R.; Pop, I.: Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powder Technol. 311, 147–156 (2017) Dinarvand, S.; Hosseini, R.; Pop, I.: Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powder Technol. 311, 147–156 (2017)
42.
go back to reference Mustafa, M.; Khan, J.A.: Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk. J. Mole. Liq. 234, 287–295 (2017) Mustafa, M.; Khan, J.A.: Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk. J. Mole. Liq. 234, 287–295 (2017)
43.
go back to reference Oztop, H.F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1366 (2008) Oztop, H.F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1366 (2008)
Metadata
Title
Computational Analysis of Unsteady Swirling Flow Around a Decelerating Rotating Porous Disk in Nanofluid
Authors
Talat Rafiq
M. Mustafa
Publication date
22-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 2/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04257-z

Other articles of this Issue 2/2020

Arabian Journal for Science and Engineering 2/2020 Go to the issue

Premium Partners