Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Computational Intelligence for Simulating a LiDAR Sensor

Cyber-Physical and Internet-of-Things Automotive Applications

Authors : Fernando Castaño, Gerardo Beruvides, Alberto Villalonga, Rodolfo E. Haber

Published in: Sensor Systems Simulations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, an overview of some of the most commonly computational intelligence techniques used to provide new capabilities to sensor networks in Cyber-Physical and Internet-of-Things environments, and for verifying and evaluating the reliability issues of sensor networks is presented. Nowadays, on-chip Light Detection and Ranging (LiDAR) concept has driven a great technological challenge into sensor networks application for Cyber-Physical and Internet-of-Things systems. Therefore, the modelling and simulation of a LiDAR sensor networks is also included in this chapter that is structured as follows. First, a brief description of the theoretical modelling of the mathematical principle of operation is outlined. Subsequently, a review of the state-of-the-art of computational intelligence techniques in sensor system simulations is explained. Likewise, a use case of applying computational intelligence techniques to LiDAR sensor networks in a Cyber-Physical System environment is presented. In this use case, a model library with four specific artificial intelligence-based methods is also designed based on sensory information database provided by the LiDAR simulation. Some of them are multi-layer perceptron neural network, a self-organization map, a support vector machine, and a k-nearest neighbour. The results demonstrate the suitability of using computational intelligence methods to increase the reliability of sensor networks when addressing the key challenges of safety and security in automotive applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference J. Pajares Redondo, L. Prieto González, J. García Guzman, B.L. Boada, V. Díaz, VEHIOT: Design and evaluation of an IoT architecture based on low-cost devices to be embedded in production vehicles. Sensors 18(2), 486 (2018)CrossRef J. Pajares Redondo, L. Prieto González, J. García Guzman, B.L. Boada, V. Díaz, VEHIOT: Design and evaluation of an IoT architecture based on low-cost devices to be embedded in production vehicles. Sensors 18(2), 486 (2018)CrossRef
4.
5.
go back to reference J. Lee, B. Bagheri, H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufact. Lett. 3, 18–23 (2015b)CrossRef J. Lee, B. Bagheri, H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufact. Lett. 3, 18–23 (2015b)CrossRef
6.
go back to reference T. Sanislav, L. Miclea, Cyber-physical systems-concept, challenges and research areas. J. Contr. Eng. Appl. Inform. 14(2), 28–33 (2012) T. Sanislav, L. Miclea, Cyber-physical systems-concept, challenges and research areas. J. Contr. Eng. Appl. Inform. 14(2), 28–33 (2012)
7.
go back to reference A. Bhave, B.H. Krogh, D. Garlan, B. Schmerl, View consistency in architectures for cyber-physical systems, in Proceedings of the 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems, (IEEE Computer Society, 2011), pp. 151–160 A. Bhave, B.H. Krogh, D. Garlan, B. Schmerl, View consistency in architectures for cyber-physical systems, in Proceedings of the 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems, (IEEE Computer Society, 2011), pp. 151–160
8.
go back to reference P. Gölzer, P. Cato, M. Amberg, Data Processing Requirements of Industry 4.0-Use Cases for Big Data Applications, in ECIS, (2015) P. Gölzer, P. Cato, M. Amberg, Data Processing Requirements of Industry 4.0-Use Cases for Big Data Applications, in ECIS, (2015)
9.
go back to reference X. Yuan, C.J. Anumba, K.M. Parfitt, Review of the potential for a cyber-physical system approach to temporary structures monitoring. Int. J. Architect. Res. ArchNet-IJAR 9(3), 26–44 (2015)CrossRef X. Yuan, C.J. Anumba, K.M. Parfitt, Review of the potential for a cyber-physical system approach to temporary structures monitoring. Int. J. Architect. Res. ArchNet-IJAR 9(3), 26–44 (2015)CrossRef
10.
go back to reference T. Watteyne, V. Handziski, X. Vilajosana, S. Duquennoy, O. Hahm, E. Baccelli, A. Wolisz, Industrial wireless ip-based cyber–physical systems. Proc. IEEE 104(5), 1025–1038 (2016)CrossRef T. Watteyne, V. Handziski, X. Vilajosana, S. Duquennoy, O. Hahm, E. Baccelli, A. Wolisz, Industrial wireless ip-based cyber–physical systems. Proc. IEEE 104(5), 1025–1038 (2016)CrossRef
11.
go back to reference J. Wan, D. Zhang, S. Zhao, L. Yang, J. Lloret, Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Commun. Mag. 52(8), 106–113 (2014)CrossRef J. Wan, D. Zhang, S. Zhao, L. Yang, J. Lloret, Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Commun. Mag. 52(8), 106–113 (2014)CrossRef
12.
go back to reference J. Ruan, W. Yu, Y. Yang, J. Hu, Design and realize of tire production process monitoring system based on cyber-physical systems, in 2015 International Conference on Computer Science and Mechanical Automation (CSMA), (IEEE, 2015), pp. 175–179 J. Ruan, W. Yu, Y. Yang, J. Hu, Design and realize of tire production process monitoring system based on cyber-physical systems, in 2015 International Conference on Computer Science and Mechanical Automation (CSMA), (IEEE, 2015), pp. 175–179
14.
go back to reference D. Reiser, D. Paraforos, M. Khan, H. Griepentrog, M. Vázquez-Arellano, Autonomous field navigation, data acquisition and node location in wireless sensor networks. Precis. Agric., 1–14 (2016) D. Reiser, D. Paraforos, M. Khan, H. Griepentrog, M. Vázquez-Arellano, Autonomous field navigation, data acquisition and node location in wireless sensor networks. Precis. Agric., 1–14 (2016)
16.
go back to reference W. Rapberger, The emergence of autonomous vehicles. Accenture (2017) W. Rapberger, The emergence of autonomous vehicles. Accenture (2017)
17.
go back to reference C.-I. Chen, R. Koseluk, C. Buchanan, A. Duerner, B. Jeppesen, H. Laux, Autonomous aerial refueling ground test demonstration—A sensor-in-the-loop, non-tracking method. Sensors 15(5), 10948–10972 (2015)CrossRef C.-I. Chen, R. Koseluk, C. Buchanan, A. Duerner, B. Jeppesen, H. Laux, Autonomous aerial refueling ground test demonstration—A sensor-in-the-loop, non-tracking method. Sensors 15(5), 10948–10972 (2015)CrossRef
18.
go back to reference G. Pandey, J.R. McBride, S. Savarese, R.M. Eustice, Automatic extrinsic calibration of vision and lidar by maximizing mutual information. J. Field Robot. 32(5), 696–722 (2015)CrossRef G. Pandey, J.R. McBride, S. Savarese, R.M. Eustice, Automatic extrinsic calibration of vision and lidar by maximizing mutual information. J. Field Robot. 32(5), 696–722 (2015)CrossRef
19.
go back to reference S. Sim, J. Sock, K. Kwak, Indirect correspondence-based robust extrinsic calibration of LiDAR and camera. Sensors 16(6), 933 (2016)CrossRef S. Sim, J. Sock, K. Kwak, Indirect correspondence-based robust extrinsic calibration of LiDAR and camera. Sensors 16(6), 933 (2016)CrossRef
20.
go back to reference R. Vivacqua, R. Vassallo, F. Martins, A low cost sensors approach for accurate vehicle localization and autonomous driving application. Sensors 17(10), 2359 (2017)CrossRef R. Vivacqua, R. Vassallo, F. Martins, A low cost sensors approach for accurate vehicle localization and autonomous driving application. Sensors 17(10), 2359 (2017)CrossRef
21.
go back to reference M. Ahmad, Reliability models for the internet of things: a paradigm shift, in Paper Presented at the 2014 IEEE International Symposium on Software Reliability Engineering Workshops, 3-6 Nov 2014, (2014) M. Ahmad, Reliability models for the internet of things: a paradigm shift, in Paper Presented at the 2014 IEEE International Symposium on Software Reliability Engineering Workshops, 3-6 Nov 2014, (2014)
23.
go back to reference Y. Zeng, H. Yu, H. Dai, S. Song, M. Lin, B. Sun, W. Jiang, M. Meng, An Improved Calibration Method for a Rotating 2D LIDAR System. Sensors 18(2), 497 (2018)CrossRef Y. Zeng, H. Yu, H. Dai, S. Song, M. Lin, B. Sun, W. Jiang, M. Meng, An Improved Calibration Method for a Rotating 2D LIDAR System. Sensors 18(2), 497 (2018)CrossRef
25.
go back to reference F. Castaño, G. Beruvides, R. Haber, A. Artuñedo, Obstacle recognition based on machine learning for On-Chip LiDAR sensors in a cyber-physical system. Sensors 17(9), 2109 (2017a)CrossRef F. Castaño, G. Beruvides, R. Haber, A. Artuñedo, Obstacle recognition based on machine learning for On-Chip LiDAR sensors in a cyber-physical system. Sensors 17(9), 2109 (2017a)CrossRef
29.
go back to reference P.J. Navarro, C. Fernández, R. Borraz, D. Alonso, A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data. Sensors 17(1), 18 (2016)CrossRef P.J. Navarro, C. Fernández, R. Borraz, D. Alonso, A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data. Sensors 17(1), 18 (2016)CrossRef
32.
go back to reference D. Bein, V. Jolly, B. Kumar, S. Latifi, Reliability modeling in wireless sensor networks. Int. J. Inform. Technol. 11(2), 1–8 (2005) D. Bein, V. Jolly, B. Kumar, S. Latifi, Reliability modeling in wireless sensor networks. Int. J. Inform. Technol. 11(2), 1–8 (2005)
34.
36.
go back to reference F. Ferracuti, A. Freddi, A. Monteriù, M. Prist, An integrated simulation module for cyber-physical automation systems. Sensors 16(5), 645 (2016)CrossRef F. Ferracuti, A. Freddi, A. Monteriù, M. Prist, An integrated simulation module for cyber-physical automation systems. Sensors 16(5), 645 (2016)CrossRef
37.
go back to reference I.D. de Souza, S.N. Silva, R.M. Teles, M.A. Fernandes, Platform for real-time simulation of dynamic systems and hardware-in-the-loop for control algorithms. Sensors 14(10), 19176–19199 (2014)CrossRef I.D. de Souza, S.N. Silva, R.M. Teles, M.A. Fernandes, Platform for real-time simulation of dynamic systems and hardware-in-the-loop for control algorithms. Sensors 14(10), 19176–19199 (2014)CrossRef
38.
go back to reference M. Mozumdar, Z.Y. Song, L. Lavagno, A.L. Sangiovanni-Vincentelli, A model-based approach for bridging virtual and physical sensor nodes in a hybrid simulation framework. Sensors 14(6), 11070–11096 (2014)CrossRef M. Mozumdar, Z.Y. Song, L. Lavagno, A.L. Sangiovanni-Vincentelli, A model-based approach for bridging virtual and physical sensor nodes in a hybrid simulation framework. Sensors 14(6), 11070–11096 (2014)CrossRef
39.
go back to reference B.-H. Lee, J.-H. Song, J.-H. Im, S.-H. Im, M.-B. Heo, G.-I. Jee, GPS/DR error estimation for autonomous vehicle localization. Sensors 15(8), 20779–20798 (2015a)CrossRef B.-H. Lee, J.-H. Song, J.-H. Im, S.-H. Im, M.-B. Heo, G.-I. Jee, GPS/DR error estimation for autonomous vehicle localization. Sensors 15(8), 20779–20798 (2015a)CrossRef
41.
go back to reference R. Richmond, S. Cain, Direct-detection LADAR systems (Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 2010)CrossRef R. Richmond, S. Cain, Direct-detection LADAR systems (Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 2010)CrossRef
42.
go back to reference S. Kim, I. Lee, Y. Kwon, Simulation of a Geiger-mode imaging LADAR system for performance assessment. Sensors 13(7), 8461 (2013)CrossRef S. Kim, I. Lee, Y. Kwon, Simulation of a Geiger-mode imaging LADAR system for performance assessment. Sensors 13(7), 8461 (2013)CrossRef
43.
go back to reference T.R. Morris Ii, Radiometric simulation of LADAR imaging for underwater environments (Universitat Politècnica de Catalunya, Barcelona, 2014) T.R. Morris Ii, Radiometric simulation of LADAR imaging for underwater environments (Universitat Politècnica de Catalunya, Barcelona, 2014)
44.
go back to reference T. Carlsson, O. Steinvall, D. Letalick, Signature simulation and signal analysis for 3-D laser radar (Swedish Defence Research Agency, Sweden, 2001), pp. 7–8 T. Carlsson, O. Steinvall, D. Letalick, Signature simulation and signal analysis for 3-D laser radar (Swedish Defence Research Agency, Sweden, 2001), pp. 7–8
45.
go back to reference O. Svelto, D.C. Hanna, Principles of lasers, vol 4 (Springer, Berlin, 1998)CrossRef O. Svelto, D.C. Hanna, Principles of lasers, vol 4 (Springer, Berlin, 1998)CrossRef
46.
go back to reference S. Ove, C. Tomas, Three-dimensional laser radar modeling, in Proc. SPIE, (2001), pp. 23–34 S. Ove, C. Tomas, Three-dimensional laser radar modeling, in Proc. SPIE, (2001), pp. 23–34
48.
go back to reference A. Gajate, R.E. Haber, J.R. Alique, P.I. Vega, Transductive-weighted neuro-fuzzy inference system for tool wear prediction in a turning process, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5572 LNAI, (2009). https://doi.org/10.1007/978-3-642-02319-4_14 CrossRef A. Gajate, R.E. Haber, J.R. Alique, P.I. Vega, Transductive-weighted neuro-fuzzy inference system for tool wear prediction in a turning process, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5572 LNAI, (2009). https://​doi.​org/​10.​1007/​978-3-642-02319-4_​14 CrossRef
54.
go back to reference M. Nsabagwa, I. Mugume, R. Kasumba, J. Muhumuza, S. Byarugaba, E. Tumwesigye, J.S. Otim, Condition monitoring and reporting framework for wireless sensor network-based automatic weather stations, in 2018 IST-Africa Week Conference (IST-Africa), 9-11 May 2018, (2018), pp. 1–8 M. Nsabagwa, I. Mugume, R. Kasumba, J. Muhumuza, S. Byarugaba, E. Tumwesigye, J.S. Otim, Condition monitoring and reporting framework for wireless sensor network-based automatic weather stations, in 2018 IST-Africa Week Conference (IST-Africa), 9-11 May 2018, (2018), pp. 1–8
58.
go back to reference C. Mammadova, H. Ben Hmida, A. Braun, A. Kuijper, New approach for optimizing the usage of situation recognition algorithms within IoT domains, in Ambient intelligence, (Springer International, Cham, 2017), pp. 183–196 CrossRef C. Mammadova, H. Ben Hmida, A. Braun, A. Kuijper, New approach for optimizing the usage of situation recognition algorithms within IoT domains, in Ambient intelligence, (Springer International, Cham, 2017), pp. 183–196 CrossRef
59.
go back to reference P.K.D. Pramanik, S. Pal, P. Choudhury, Beyond automation: The cognitive IoT. Artificial intelligence brings sense to the internet of things, in Cognitive Computing for Big Data Systems Over IoT: Frameworks, Tools and Applications, ed. by A. K. Sangaiah, A. Thangavelu, V. Meenakshi Sundaram, (Springer International, Cham, 2018), pp. 1–37. https://doi.org/10.1007/978-3-319-70688-7_1 CrossRef P.K.D. Pramanik, S. Pal, P. Choudhury, Beyond automation: The cognitive IoT. Artificial intelligence brings sense to the internet of things, in Cognitive Computing for Big Data Systems Over IoT: Frameworks, Tools and Applications, ed. by A. K. Sangaiah, A. Thangavelu, V. Meenakshi Sundaram, (Springer International, Cham, 2018), pp. 1–37. https://​doi.​org/​10.​1007/​978-3-319-70688-7_​1 CrossRef
66.
68.
go back to reference I.M. Pires, N.M. Garcia, N. Pombo, F. Flórez-Revuelta, From data acquisition to data fusion: a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices. Sensors 16(2), 184 (2016)CrossRef I.M. Pires, N.M. Garcia, N. Pombo, F. Flórez-Revuelta, From data acquisition to data fusion: a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices. Sensors 16(2), 184 (2016)CrossRef
71.
go back to reference H.F. Nweke, Y.W. Teh, M.A. Al-Garadi, U.R. Alo, Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Exp. Syst. Appl. (2018) H.F. Nweke, Y.W. Teh, M.A. Al-Garadi, U.R. Alo, Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Exp. Syst. Appl. (2018)
72.
go back to reference S. Liu, X. Hao, Z. Zhang, Pedestrian retrieval via part-based gradation regularization in sensor networks. IEEE Access 6, 38171–38178 (2018)CrossRef S. Liu, X. Hao, Z. Zhang, Pedestrian retrieval via part-based gradation regularization in sensor networks. IEEE Access 6, 38171–38178 (2018)CrossRef
73.
go back to reference H. Qiao, F.-Y. Wang, X. Cao, Application of a decomposed support vector machine algorithm in pedestrian detection from a moving vehicle, in Intelligence and Security Informatics, (Springer, Berlin, 2005), pp. 662–663CrossRef H. Qiao, F.-Y. Wang, X. Cao, Application of a decomposed support vector machine algorithm in pedestrian detection from a moving vehicle, in Intelligence and Security Informatics, (Springer, Berlin, 2005), pp. 662–663CrossRef
74.
go back to reference R. Madarshahian, J.M. Caicedo, Human activity recognition using multinomial logistic regression, in Model Validation and Uncertainty Quantification, vol. 3, (Springer International, Cham, 2015), pp. 363–372CrossRef R. Madarshahian, J.M. Caicedo, Human activity recognition using multinomial logistic regression, in Model Validation and Uncertainty Quantification, vol. 3, (Springer International, Cham, 2015), pp. 363–372CrossRef
78.
go back to reference F. Li, Z. Lv, Reliable vehicle type recognition based on information fusion in multiple sensor networks. Comput. Netw. 117, 76–84 (2017)CrossRef F. Li, Z. Lv, Reliable vehicle type recognition based on information fusion in multiple sensor networks. Comput. Netw. 117, 76–84 (2017)CrossRef
81.
go back to reference I. Kabashkin, J. Kundler, Reliability of sensor nodes in wireless sensor networks of cyber physical systems. Proc. Comput. Sci. 104, 380–384 (2017)CrossRef I. Kabashkin, J. Kundler, Reliability of sensor nodes in wireless sensor networks of cyber physical systems. Proc. Comput. Sci. 104, 380–384 (2017)CrossRef
82.
go back to reference L.A. Laranjeira, G.N. Rodrigues, Border effect analysis for reliability assurance and continuous connectivity of wireless sensor networks in the presence of sensor failures. IEEE Trans. Wirel. Commun. 13(8), 4232–4246 (2014)CrossRef L.A. Laranjeira, G.N. Rodrigues, Border effect analysis for reliability assurance and continuous connectivity of wireless sensor networks in the presence of sensor failures. IEEE Trans. Wirel. Commun. 13(8), 4232–4246 (2014)CrossRef
83.
go back to reference M. Yan, K.-Y. Lam, S. Han, E. Chan, Q. Chen, P. Fan, D. Chen, M. Nixon, Hypergraph-based data link layer scheduling for reliable packet delivery in wireless sensing and control networks with end-to-end delay constraints. Inform. Sci. 278, 34–55 (2014)MathSciNetMATHCrossRef M. Yan, K.-Y. Lam, S. Han, E. Chan, Q. Chen, P. Fan, D. Chen, M. Nixon, Hypergraph-based data link layer scheduling for reliable packet delivery in wireless sensing and control networks with end-to-end delay constraints. Inform. Sci. 278, 34–55 (2014)MathSciNetMATHCrossRef
84.
go back to reference M.-T. Vo, T.T. Thanh Nghi, V.-S. Tran, L. Mai, C.-T. Le, Wireless sensor network for real time healthcare monitoring: Network design and performance evaluation simulation, in 5th International Conference on Biomedical Engineering in Vietnam, (Springer International, Cham, 2015), pp. 87–91CrossRef M.-T. Vo, T.T. Thanh Nghi, V.-S. Tran, L. Mai, C.-T. Le, Wireless sensor network for real time healthcare monitoring: Network design and performance evaluation simulation, in 5th International Conference on Biomedical Engineering in Vietnam, (Springer International, Cham, 2015), pp. 87–91CrossRef
85.
go back to reference D. Cacciagrano, R. Culmone, M. Micheletti, L. Mostarda, Energy-efficient clustering for wireless sensor devices in internet of things, in Performability in Internet of Things, (Springer, Cham, 2019), pp. 59–80CrossRef D. Cacciagrano, R. Culmone, M. Micheletti, L. Mostarda, Energy-efficient clustering for wireless sensor devices in internet of things, in Performability in Internet of Things, (Springer, Cham, 2019), pp. 59–80CrossRef
86.
go back to reference S. Hossain, A.R. Fayjie, O. Doukhi, D.-J. Lee, CAIAS Simulator: Self-driving Vehicle Simulator for AI Research, in International Conference on Intelligent Computing & Optimization, (Springer, Berlin, 2018), pp. 187–195 S. Hossain, A.R. Fayjie, O. Doukhi, D.-J. Lee, CAIAS Simulator: Self-driving Vehicle Simulator for AI Research, in International Conference on Intelligent Computing & Optimization, (Springer, Berlin, 2018), pp. 187–195
87.
go back to reference M. Mukherjee, I. Adhikary, S. Mondal, A.K. Mondal, M. Pundir, V.A. Chowdary, Vision of IoT: Applications, Challenges, and Opportunities with Dehradun Perspective, in Proceeding of International Conference on Intelligent Communication, Control and Devices, (Springer, Singapore, 2017), pp. 553–559CrossRef M. Mukherjee, I. Adhikary, S. Mondal, A.K. Mondal, M. Pundir, V.A. Chowdary, Vision of IoT: Applications, Challenges, and Opportunities with Dehradun Perspective, in Proceeding of International Conference on Intelligent Communication, Control and Devices, (Springer, Singapore, 2017), pp. 553–559CrossRef
88.
go back to reference A. Bradai, A. Benslimane, K.D. Singh, Dynamic anchor points selection for mobility management in software defined networks. J. Netw. Comput. Appl. 57, 1–11 (2015)CrossRef A. Bradai, A. Benslimane, K.D. Singh, Dynamic anchor points selection for mobility management in software defined networks. J. Netw. Comput. Appl. 57, 1–11 (2015)CrossRef
89.
go back to reference S. Kumar, D. Lobiyal, Novel DV-Hop localization algorithm for wireless sensor networks. Telecommun. Syst. 64(3), 509–524 (2017)CrossRef S. Kumar, D. Lobiyal, Novel DV-Hop localization algorithm for wireless sensor networks. Telecommun. Syst. 64(3), 509–524 (2017)CrossRef
92.
go back to reference N.B. Priyantha, A. Chakraborty, H. Balakrishnan, The Cricket location-support system, in Paper presented at the Proceedings of the 6th annual international conference on Mobile computing and networking, Boston, Massachusetts, USA, (2000) N.B. Priyantha, A. Chakraborty, H. Balakrishnan, The Cricket location-support system, in Paper presented at the Proceedings of the 6th annual international conference on Mobile computing and networking, Boston, Massachusetts, USA, (2000)
93.
go back to reference A. Savvides, C.-C. Han, M.B. Strivastava, Dynamic fine-grained localization in Ad-Hoc networks of sensors, in Paper presented at the Proceedings of the 7th annual international conference on Mobile computing and networking, Rome, Italy, (2001) A. Savvides, C.-C. Han, M.B. Strivastava, Dynamic fine-grained localization in Ad-Hoc networks of sensors, in Paper presented at the Proceedings of the 7th annual international conference on Mobile computing and networking, Rome, Italy, (2001)
95.
go back to reference T. He, C. Huang, B.M. Blum, J.A. Stankovic, T. Abdelzaher, Range-free localization schemes for large scale sensor networks, in Paper presented at the Proceedings of the 9th annual international conference on Mobile computing and networking, San Diego, CA, USA, (2003) T. He, C. Huang, B.M. Blum, J.A. Stankovic, T. Abdelzaher, Range-free localization schemes for large scale sensor networks, in Paper presented at the Proceedings of the 9th annual international conference on Mobile computing and networking, San Diego, CA, USA, (2003)
97.
go back to reference A. Khan, I. Ali, H.A. Mahmood, Localization free variable transmit power routing protocol for underwater wireless sensor networks, in Advances in Network-Based Information Systems, (Springer International, Cham, 2018), pp. 136–147CrossRef A. Khan, I. Ali, H.A. Mahmood, Localization free variable transmit power routing protocol for underwater wireless sensor networks, in Advances in Network-Based Information Systems, (Springer International, Cham, 2018), pp. 136–147CrossRef
98.
go back to reference L. Cui, C. Xu, G. Li, Z. Ming, Y. Feng, N. Lu, A high accurate localization algorithm with DV-Hop and differential evolution for wireless sensor network. Appl. Soft Comput. 68, 39–52 (2018)CrossRef L. Cui, C. Xu, G. Li, Z. Ming, Y. Feng, N. Lu, A high accurate localization algorithm with DV-Hop and differential evolution for wireless sensor network. Appl. Soft Comput. 68, 39–52 (2018)CrossRef
99.
go back to reference S.K. Gharghan, R. Nordin, A.M. Jawad, H.M. Jawad, M. Ismail, Adaptive neural fuzzy inference system for accurate localization of wireless sensor network in outdoor and indoor cycling applications. IEEE Access 6, 38475–38489 (2018)CrossRef S.K. Gharghan, R. Nordin, A.M. Jawad, H.M. Jawad, M. Ismail, Adaptive neural fuzzy inference system for accurate localization of wireless sensor network in outdoor and indoor cycling applications. IEEE Access 6, 38475–38489 (2018)CrossRef
102.
103.
go back to reference S. Phoemphon, C. So-In, D.T. Niyato, A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization. Appl. Soft Comput. 65, 101–120 (2018)CrossRef S. Phoemphon, C. So-In, D.T. Niyato, A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization. Appl. Soft Comput. 65, 101–120 (2018)CrossRef
104.
go back to reference Y. Xu, L. Wang, Z. Wang, Y. Lv, Y. Zhang, W. Chen, Using differential evolution to research the multi-objective optimization of medical sensor networks: A brief discussion, in 2018 Chinese Control And Decision Conference (CCDC), (IEEE, 2018) Y. Xu, L. Wang, Z. Wang, Y. Lv, Y. Zhang, W. Chen, Using differential evolution to research the multi-objective optimization of medical sensor networks: A brief discussion, in 2018 Chinese Control And Decision Conference (CCDC), (IEEE, 2018)
105.
go back to reference K. Singh, K. Singh, A. Aziz, Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Comput. Netw. 138, 90–107 (2018)CrossRef K. Singh, K. Singh, A. Aziz, Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Comput. Netw. 138, 90–107 (2018)CrossRef
106.
go back to reference S. Amri, F. Khelifi, A. Bradai, A. Rachedi, M.L. Kaddachi, M. Atri, A new fuzzy logic based node localization mechanism for wireless sensor networks. Future Gener. Comput. Syst. 93, 799–813 (2017)CrossRef S. Amri, F. Khelifi, A. Bradai, A. Rachedi, M.L. Kaddachi, M. Atri, A new fuzzy logic based node localization mechanism for wireless sensor networks. Future Gener. Comput. Syst. 93, 799–813 (2017)CrossRef
108.
go back to reference N. Ramluckun, V. Bassoo, Energy-efficient chain-cluster based intelligent routing technique for wireless sensor networks. Appl. Comput. Inform. (2018) N. Ramluckun, V. Bassoo, Energy-efficient chain-cluster based intelligent routing technique for wireless sensor networks. Appl. Comput. Inform. (2018)
109.
go back to reference R. Logambigai, S. Ganapathy, A. Kannan, Energy–efficient grid–based routing algorithm using intelligent fuzzy rules for wireless sensor networks. Comput. Electr. Eng. 68, 62–75 (2018)CrossRef R. Logambigai, S. Ganapathy, A. Kannan, Energy–efficient grid–based routing algorithm using intelligent fuzzy rules for wireless sensor networks. Comput. Electr. Eng. 68, 62–75 (2018)CrossRef
110.
go back to reference S.B. Shah, Z. Chen, F. Yin, I.U. Khan, N. Ahmad, Energy and interoperable aware routing for throughput optimization in clustered IoT-wireless sensor networks. Future Gener. Comput. Syst. 81, 372–381 (2018)CrossRef S.B. Shah, Z. Chen, F. Yin, I.U. Khan, N. Ahmad, Energy and interoperable aware routing for throughput optimization in clustered IoT-wireless sensor networks. Future Gener. Comput. Syst. 81, 372–381 (2018)CrossRef
111.
go back to reference S. Su, S. Zhao, An optimal clustering mechanism based on Fuzzy-C means for wireless sensor networks. Sustain. Comput. Inform. Syst. 18, 127–134 (2018) S. Su, S. Zhao, An optimal clustering mechanism based on Fuzzy-C means for wireless sensor networks. Sustain. Comput. Inform. Syst. 18, 127–134 (2018)
112.
go back to reference W. Elsayed, M. Elhoseny, S. Sabbeh, A. Riad, Self-maintenance model for wireless sensor networks. Comput. Electr. Eng. 70, 799–812 (2017) CrossRef W. Elsayed, M. Elhoseny, S. Sabbeh, A. Riad, Self-maintenance model for wireless sensor networks. Comput. Electr. Eng. 70, 799–812 (2017) CrossRef
113.
go back to reference H. He, Z. Zhu, E. Makinen, A neural network model to minimize the connected dominating set for self-configuration of wireless sensor networks. IEEE Trans. Neural Netw. 20(6), 973–982 (2009)CrossRef H. He, Z. Zhu, E. Makinen, A neural network model to minimize the connected dominating set for self-configuration of wireless sensor networks. IEEE Trans. Neural Netw. 20(6), 973–982 (2009)CrossRef
114.
go back to reference F. Castaño, G. Beruvides, R.E. Haber, A. Villalonga, Time-To-failure modelling in On-Chip LiDAR sensors for automotive applications. Proceedings 1(8), 809 (2017b)CrossRef F. Castaño, G. Beruvides, R.E. Haber, A. Villalonga, Time-To-failure modelling in On-Chip LiDAR sensors for automotive applications. Proceedings 1(8), 809 (2017b)CrossRef
116.
go back to reference O. Michel, Cyberbotics Ltd. Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)CrossRef O. Michel, Cyberbotics Ltd. Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)CrossRef
118.
go back to reference A. Alique, R.E. Haber, R.H. Haber, S. Ros, C. Gonzalez, Neural network-based model for the prediction of cutting force in milling process. A progress study on a real case, in IEEE International Symposium on Intelligent Control—Proceedings, (2000), pp. 121–125 A. Alique, R.E. Haber, R.H. Haber, S. Ros, C. Gonzalez, Neural network-based model for the prediction of cutting force in milling process. A progress study on a real case, in IEEE International Symposium on Intelligent Control—Proceedings, (2000), pp. 121–125
121.
go back to reference E.M. Voumvoulakis, N.D. Hatziargyriou, Decision trees-aided self-organized maps for corrective dynamic security. IEEE Trans. Power Syst. 23(2), 622–630 (2008)CrossRef E.M. Voumvoulakis, N.D. Hatziargyriou, Decision trees-aided self-organized maps for corrective dynamic security. IEEE Trans. Power Syst. 23(2), 622–630 (2008)CrossRef
Metadata
Title
Computational Intelligence for Simulating a LiDAR Sensor
Authors
Fernando Castaño
Gerardo Beruvides
Alberto Villalonga
Rodolfo E. Haber
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16577-2_5