Skip to main content
Top
Published in: Flow, Turbulence and Combustion 1/2020

04-12-2019

Computational Study of Reactants Mixing in a Rotating Detonation Combustor Using Compressible RANS

Authors: Sebastian Weiss, Myles D. Bohon, C. Oliver Paschereit, Ephraim J. Gutmark

Published in: Flow, Turbulence and Combustion | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study considers the steady-state, non-reacting mixing of fuel and air within the hydrogen-air Rotating Detonation Combustor (RDC) currently in use at TU Berlin. The interaction of reactants occurs in a confined jet-in-crossflow (JIC) configuration with an axially injected fuel jet and an air stream entering radially inwards. The investigation of the baseline flow case provided three flow characteristics primarily responsible for affecting the process of mixing: supersonic shock patterns, the existence of two major recirculation zones, and a counter-rotating vortex pair (CVP) structure. In a parametric study with nine different flow configurations, attained by the variation of reactant inlet flow rates, the effect on mixing behavior and performance was analyzed in order to determine the most impactful parameter for the RDC refill process. The air mass flow rate was identified as the primary parameter with respect to the general flow field due to the interaction of a dominant air barrel shock with the fuel jet. The low flow rate cases allowed the greater fuel and air jet interaction in the near injection region of the combustor, whereas in the far field the higher flow rate configurations attained comparable mixing quality despite more complicated fuel and air jet shock structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Heiser, W.H., Pratt, D.T.: Thermodynamic cycle analysis of pulse detonation engines. J. Propuls. Power 18(1), 68–76 (2002)CrossRef Heiser, W.H., Pratt, D.T.: Thermodynamic cycle analysis of pulse detonation engines. J. Propuls. Power 18(1), 68–76 (2002)CrossRef
2.
go back to reference Wolański, P.: Detonation engines. J. KONES Powertrain Transport 18(3), 515–521 (2011) Wolański, P.: Detonation engines. J. KONES Powertrain Transport 18(3), 515–521 (2011)
3.
go back to reference St. George, A., Driscoll, R., Gutmark, E., Munday, D.: Experimental comparison of axial turbine performance under steady and pulsating flows. J. Turbomach. 136(11), 1–11 (2014)CrossRef St. George, A., Driscoll, R., Gutmark, E., Munday, D.: Experimental comparison of axial turbine performance under steady and pulsating flows. J. Turbomach. 136(11), 1–11 (2014)CrossRef
4.
go back to reference Voitsekhovskii, B.V.: Stationary detonation. Soviet Phys. Doklady 4(6), 1207–1209 (1959) Voitsekhovskii, B.V.: Stationary detonation. Soviet Phys. Doklady 4(6), 1207–1209 (1959)
5.
go back to reference Nicholls, J.A., Cullen, R.E., Ragland, K.W.: Feasibility studies of a rotating detonation wave rocket motor. J. Spacecraft 3(6), 893–898 (1966)CrossRef Nicholls, J.A., Cullen, R.E., Ragland, K.W.: Feasibility studies of a rotating detonation wave rocket motor. J. Spacecraft 3(6), 893–898 (1966)CrossRef
6.
go back to reference Naples, A., Hoke, J., Karnesky, J., Schauer, F.: Flowfield characterization of a rotating detonation engine. AIAA Journal, pp. 1–6 (2013) Naples, A., Hoke, J., Karnesky, J., Schauer, F.: Flowfield characterization of a rotating detonation engine. AIAA Journal, pp. 1–6 (2013)
7.
go back to reference Duvall, J., Gamba, M.: Characterization of reactant mixing in a rotating detonation engine using schlieren imaging and planar laser induced fluorescence. AIAA Propulsion and Energy Forum (2018) Duvall, J., Gamba, M.: Characterization of reactant mixing in a rotating detonation engine using schlieren imaging and planar laser induced fluorescence. AIAA Propulsion and Energy Forum (2018)
8.
go back to reference Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S.: Three-Dimensional Numerical simulation of the operation of a Rotating-Detonation chamber with separate supply of fuel and oxidizer. Russian J. Phys. Chem. B 7(1), 35–43 (2013)CrossRef Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S.: Three-Dimensional Numerical simulation of the operation of a Rotating-Detonation chamber with separate supply of fuel and oxidizer. Russian J. Phys. Chem. B 7(1), 35–43 (2013)CrossRef
9.
go back to reference Rankin, B.A., Fugger, C.A., Richardson, D.R., Cho, K.Y., Hoke, J.L., Caswell, A.W., Gord, J.R., Schauer, F.R.: Evaluation of Mixing Processes in a Non-Premixed Rotating Detonation Engine Using Acetone PLIF Imaging. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, pp. 1–12 (2016) Rankin, B.A., Fugger, C.A., Richardson, D.R., Cho, K.Y., Hoke, J.L., Caswell, A.W., Gord, J.R., Schauer, F.R.: Evaluation of Mixing Processes in a Non-Premixed Rotating Detonation Engine Using Acetone PLIF Imaging. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, pp. 1–12 (2016)
10.
go back to reference Driscoll, R., Aghasi, P., St. George, A., Gutmark, E.J.: Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine. Int. J. Hydrogen Energy 41, 5162–5175 (2016)CrossRef Driscoll, R., Aghasi, P., St. George, A., Gutmark, E.J.: Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine. Int. J. Hydrogen Energy 41, 5162–5175 (2016)CrossRef
11.
go back to reference Shank, J.: Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air. Ph.D. thesis, Air Force Institute of Technology (2012) Shank, J.: Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air. Ph.D. thesis, Air Force Institute of Technology (2012)
12.
go back to reference Fric, T.F.: Structure in the Near Field of the Transverse Jet. Ph.D. thesis, California Institute of Technology (1990) Fric, T.F.: Structure in the Near Field of the Transverse Jet. Ph.D. thesis, California Institute of Technology (1990)
13.
go back to reference Fric, T.F., Roshko, A.: Views of the transverse jet near field. Phys. Fluids 31 (1988) Fric, T.F., Roshko, A.: Views of the transverse jet near field. Phys. Fluids 31 (1988)
14.
go back to reference Fric, T.F., Roshko, A.: Structure in the near field of the transverse jet. Turbulent Shear Flows 7 (cd. F. Durst others.) Springer, Berlin (1991) Fric, T.F., Roshko, A.: Structure in the near field of the transverse jet. Turbulent Shear Flows 7 (cd. F. Durst others.) Springer, Berlin (1991)
15.
go back to reference Fric, T.F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1–47 (1994)CrossRef Fric, T.F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1–47 (1994)CrossRef
16.
go back to reference Cortelezzi, L., Karagozian, A.R.: On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347–373 (2001)MathSciNetCrossRef Cortelezzi, L., Karagozian, A.R.: On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347–373 (2001)MathSciNetCrossRef
17.
go back to reference Kelso, R.M., Lim, T.T., Perry, A.E.: An experimental study of round jet in Cross-Flow. J. Fluid Mech. 306, 111–144 (1996)CrossRef Kelso, R.M., Lim, T.T., Perry, A.E.: An experimental study of round jet in Cross-Flow. J. Fluid Mech. 306, 111–144 (1996)CrossRef
18.
go back to reference Wang, H.: A Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port. Ph.D. thesis, Politecnico di Milano (2013) Wang, H.: A Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port. Ph.D. thesis, Politecnico di Milano (2013)
19.
go back to reference Broadwell, J.E., Breidenthal, R.E.: Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405–412 (1984)CrossRef Broadwell, J.E., Breidenthal, R.E.: Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405–412 (1984)CrossRef
20.
go back to reference Muppidi, S., Mahesh, K.: A two-dimensional model problem to explain CVP formation in a transverse jet. University of Minnesota (1986), pp. 1–14 (2001) Muppidi, S., Mahesh, K.: A two-dimensional model problem to explain CVP formation in a transverse jet. University of Minnesota (1986), pp. 1–14 (2001)
21.
go back to reference Cutler, P.R.E.: On the Structure and Mixing of a Jet in Crossflow. Ph.D. thesis, The University of Adelaide (2002) Cutler, P.R.E.: On the Structure and Mixing of a Jet in Crossflow. Ph.D. thesis, The University of Adelaide (2002)
22.
go back to reference Schetz, J.A., Billig, F.S.: Penetration of gaseous jets injected into a supersonic stream. J. Spacecr. Rocket. 3(11), 1658–1665 (1966)CrossRef Schetz, J.A., Billig, F.S.: Penetration of gaseous jets injected into a supersonic stream. J. Spacecr. Rocket. 3(11), 1658–1665 (1966)CrossRef
23.
go back to reference Ben-Yakar, A., Mungal, M.G., Hanson, R.K.: Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18, 1–16 (2006)CrossRef Ben-Yakar, A., Mungal, M.G., Hanson, R.K.: Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18, 1–16 (2006)CrossRef
24.
go back to reference Gruber, M.R., Nejadt, A.S., Chen, T.H., Dutton, J.C.: Mixing and penetration studies of sonic jets in a Mach 2 freestream. J. Propuls. Power 11, 315–323 (1995)CrossRef Gruber, M.R., Nejadt, A.S., Chen, T.H., Dutton, J.C.: Mixing and penetration studies of sonic jets in a Mach 2 freestream. J. Propuls. Power 11, 315–323 (1995)CrossRef
26.
go back to reference Greenshields, C.J.: OpenFOAM User Guide version 5.0 (2017) Greenshields, C.J.: OpenFOAM User Guide version 5.0 (2017)
27.
go back to reference Kraposhin, M.: Study of capabilities of hybrid scheme for advection terms approximation in mathematical models of compressible flows. Trudy ISP RAN / Proc. ISP RAS 28(3), 267–326 (2016)CrossRef Kraposhin, M.: Study of capabilities of hybrid scheme for advection terms approximation in mathematical models of compressible flows. Trudy ISP RAN / Proc. ISP RAS 28(3), 267–326 (2016)CrossRef
28.
go back to reference Kraposhin, M., Bovtrikova, A., Strijhak, S.: Adaptation of Kurganov-Tadmor numerical scheme for applying in combination with the PISO method in numerical simulation of flows in a wide range of mach numbers. Procedia Comput. Sci. 66, 43–52 (2015)CrossRef Kraposhin, M., Bovtrikova, A., Strijhak, S.: Adaptation of Kurganov-Tadmor numerical scheme for applying in combination with the PISO method in numerical simulation of flows in a wide range of mach numbers. Procedia Comput. Sci. 66, 43–52 (2015)CrossRef
29.
go back to reference DeSpirito, J.: Turbulence model effects on Cold-Gas lateral jet interaction in a supersonic crossflow. Army Research Laboratory, pp. 50 (2014) DeSpirito, J.: Turbulence model effects on Cold-Gas lateral jet interaction in a supersonic crossflow. Army Research Laboratory, pp. 50 (2014)
30.
go back to reference Chauvet, N., Deck, S., Jacquin, L.: Numerical study of mixing enhancement in a supersonic round jet. AIAA J. 45(7), 1675–1687 (2007)CrossRef Chauvet, N., Deck, S., Jacquin, L.: Numerical study of mixing enhancement in a supersonic round jet. AIAA J. 45(7), 1675–1687 (2007)CrossRef
31.
go back to reference Kurganov, A., Tadmor, E.: New High-Resolution central schemes for nonlinear conservation laws and Convection-Diffusion equations. J. Comput. Phys. 160, 241–282 (2000)MathSciNetCrossRef Kurganov, A., Tadmor, E.: New High-Resolution central schemes for nonlinear conservation laws and Convection-Diffusion equations. J. Comput. Phys. 160, 241–282 (2000)MathSciNetCrossRef
32.
go back to reference Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses. Trans. R. Soc. Lond. 210, 307–357 (1910) Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses. Trans. R. Soc. Lond. 210, 307–357 (1910)
33.
go back to reference Richardson, L.F., Gaunt, J.A.: The deferred approach to the limit. Trans. R. Soc. Lond. 226, 299–361 (1927)CrossRef Richardson, L.F., Gaunt, J.A.: The deferred approach to the limit. Trans. R. Soc. Lond. 226, 299–361 (1927)CrossRef
34.
go back to reference Celik, I.B.: Procedure for estimation and reporting of discretization error in CFD applications. Journal of Fluids Engineering 130 (2008) Celik, I.B.: Procedure for estimation and reporting of discretization error in CFD applications. Journal of Fluids Engineering 130 (2008)
35.
go back to reference Bluemner, R., Bohon, M.D., Paschereit, C.O., Gutmark, E.J.: Experimental study of reactant mixing in model rotating detonation combustor geometries. Flow, Turbulence and Combustion (2018) Bluemner, R., Bohon, M.D., Paschereit, C.O., Gutmark, E.J.: Experimental study of reactant mixing in model rotating detonation combustor geometries. Flow, Turbulence and Combustion (2018)
36.
go back to reference Bluemner, R., Bohon, M.D., Nguyen, H.Q., Paschereit, C.O.: Influence of Reactant Injection Parameters on RDC Mode of Operation. In: 57Th AIAA Aerospace Sciences Meeting. San Diego, CA (2019) Bluemner, R., Bohon, M.D., Nguyen, H.Q., Paschereit, C.O.: Influence of Reactant Injection Parameters on RDC Mode of Operation. In: 57Th AIAA Aerospace Sciences Meeting. San Diego, CA (2019)
37.
go back to reference Abramovich, G.: The theory of turbulent jets. Massachusetts Institute of Technology Press, Cambridge (1963) Abramovich, G.: The theory of turbulent jets. Massachusetts Institute of Technology Press, Cambridge (1963)
38.
go back to reference Margason, R.J.: The path of a jet directed at large angles to a subsonic free stream. NASA TN d-4919 (1968) Margason, R.J.: The path of a jet directed at large angles to a subsonic free stream. NASA TN d-4919 (1968)
39.
go back to reference Orth, R.C., Funk, J.A.: An experimental and comparative study of jet penetration in supersonic flow. AIAA J. 5, 1–9 (1967)CrossRef Orth, R.C., Funk, J.A.: An experimental and comparative study of jet penetration in supersonic flow. AIAA J. 5, 1–9 (1967)CrossRef
42.
go back to reference Fric, T.F.: Effects of Fuel-Air Unmixedness on NOx Emissions. J. Propuls. Power 9(5), 708–713 (1993)CrossRef Fric, T.F.: Effects of Fuel-Air Unmixedness on NOx Emissions. J. Propuls. Power 9(5), 708–713 (1993)CrossRef
Metadata
Title
Computational Study of Reactants Mixing in a Rotating Detonation Combustor Using Compressible RANS
Authors
Sebastian Weiss
Myles D. Bohon
C. Oliver Paschereit
Ephraim J. Gutmark
Publication date
04-12-2019
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 1/2020
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00097-x

Other articles of this Issue 1/2020

Flow, Turbulence and Combustion 1/2020 Go to the issue

Premium Partners