Skip to main content
Top

2021 | OriginalPaper | Chapter

Computer-Aided Diagnostic System for Diabetic Retinopathy Using Convolutional Neural Network

Authors : Sanket Saxena, Shivam Sinha, Shruti Jain

Published in: Innovations in Information and Communication Technologies (IICT-2020)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An ongoing advancement in the condition of craftsmanship innovation assumes an imperative job in the picture handling applications, like biomedical, satellite picture preparing, artificial intelligence, object recognizable proof, diabetic retinopathy (DR), etc. DR is an eye disease found in people having high blood sugar. It can lead to loss of vision, if it is not treated properly. There is an increase in number of patients in comparison with ophthalmologists. The seriousness of the DR depends upon nearness of microaneurysms, hemorrhages, exudates and neovascularization. Specialists arrange diabetic retinopathy into five stages, namely ordinary, gentle, moderate, non-proliferative DR (NPDR) or proliferative DR (PDR). Convolutional neural network (CNN) results in high accuracy in classifying these diseases by spatial analysis. A CNN is progressively mind-boggling engineering construed more from the human visual perspective. A previous study done on DR suggests the use of CNN but with a different approach. Among other managed calculations involved, the proposed arrangement is to locate a superior and advanced way to classify the fundus picture with little pre-preparing techniques. Different fundus image databases available have been discussed. In this paper, different parameters used for the evaluation of developed systems have been presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Santhakumar, R. ,Tandur, M., Rajkumar, E.R., Geetha, K.S, Haritz, G., Rajamani, K.T. (2016). Machine Learning Algorithm for Retinal Image Analysis [[978–1–5090–2597–8/16] 2016 IEEE Region 10 Conference (TENCON), vol. 2, pp. 62–65. Santhakumar, R. ,Tandur, M., Rajkumar, E.R., Geetha, K.S, Haritz, G., Rajamani, K.T. (2016). Machine Learning Algorithm for Retinal Image Analysis [[978–1–5090–2597–8/16] 2016 IEEE Region 10 Conference (TENCON), vol. 2, pp. 62–65.
go back to reference Chandrakumar, T., Kathirvel, R. (2016). Classifying Diabetic Retinopathy using Deep Learning Architecture. International Journal of Engineering Research & Technology (IJERT) , 5(06),122–125. Chandrakumar, T., Kathirvel, R. (2016). Classifying Diabetic Retinopathy using Deep Learning Architecture. International Journal of Engineering Research & Technology (IJERT) , 5(06),122–125.
go back to reference Rodtook, A.,Chucherd, S. (2019). Automated Optic Disc Localization Algorithm by Combining A Blob of Corner Patterns, Brightness and Circular Structures Models 2019 Association for Computing Machinery ITCC 2019, August 16–18, 2019, Singapore vol. 7, pp. 45–52. Rodtook, A.,Chucherd, S. (2019). Automated Optic Disc Localization Algorithm by Combining A Blob of Corner Patterns, Brightness and Circular Structures Models 2019 Association for Computing Machinery ITCC 2019, August 16–18, 2019, Singapore vol. 7, pp. 45–52.
go back to reference Poplin, R., Varadarajan, A.V., Blumer, K., Liu,Y., McConnell, M.V., Corrado, G.S., Peng, L., Webster, D.R. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2, 158–164. Poplin, R., Varadarajan, A.V., Blumer, K., Liu,Y., McConnell, M.V., Corrado, G.S., Peng, L., Webster, D.R. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2, 158–164.
go back to reference Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. In International Conference On Medical Imaging Understanding and Analysis 2016, MIUA 2016, vol. 6, pp. 15–19 6–8, July 2016, Loughborough, UK. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. In International Conference On Medical Imaging Understanding and Analysis 2016, MIUA 2016, vol. 6, pp. 15–19 6–8, July 2016, Loughborough, UK.
go back to reference https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148 https://​medium.​com/​@RaghavPrabhu/​understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
go back to reference Bhardwaj, C., Jain, S., Sood, M. (2020a). Diabetic retinopathy severity grading employing quadrant based inception-V3 convolution neural network architecture, International Journal of Imaging Systems and Technology, 1–17. https://doi.org/10.1002/ima.22510 Bhardwaj, C., Jain, S., Sood, M. (2020a). Diabetic retinopathy severity grading employing quadrant based inception-V3 convolution neural network architecture, International Journal of Imaging Systems and Technology, 1–17. https://​doi.​org/​10.​1002/​ima.​22510
Metadata
Title
Computer-Aided Diagnostic System for Diabetic Retinopathy Using Convolutional Neural Network
Authors
Sanket Saxena
Shivam Sinha
Shruti Jain
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-66218-9_25