Skip to main content
Top
Published in: Automatic Control and Computer Sciences 8/2022

01-12-2022

Computer Network Clustering Methods in Cybersecurity Problems

Authors: E. Yu. Pavlenko, I. S. Eremenko, A. D. Fatin

Published in: Automatic Control and Computer Sciences | Issue 8/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computer network clustering methods are compared. The purpose of this work is to systematize, generalize, analyze, and supplement the existing experience in describing and solving information security problems of cyber-physical systems. In addition, it is necessary to construct a general information basis for testing the methods using our own datasets and subsequently implementing our own approach to clustering computer networks in cybersecurity problems.
Literature
1.
go back to reference Trask, N., Gulian, M., Huang, A., and Lee, K., Probabilistic partition of unity networks: clustering based deep approximation, 2021. arXiv:2107.03066 [cs.LG] Trask, N., Gulian, M., Huang, A., and Lee, K., Probabilistic partition of unity networks: clustering based deep approximation, 2021. arXiv:2107.03066 [cs.LG]
4.
go back to reference Savvas, I.K., Michos, C., Chernov, A., and Butakova, M., High performance clustering techniques: A survey, Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19), Kovalev, S., Tarassov, V., Snasel, V., and Sukhanov, A., Advances in Intelligent Systems and Computing, vol. 1156, Cham: Springer, 2020, pp. 252–259. https://doi.org/10.1007/978-3-030-50097-9_26 Savvas, I.K., Michos, C., Chernov, A., and Butakova, M., High performance clustering techniques: A survey, Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19), Kovalev, S., Tarassov, V., Snasel, V., and Sukhanov, A., Advances in Intelligent Systems and Computing, vol. 1156, Cham: Springer, 2020, pp. 252–259.  https://​doi.​org/​10.​1007/​978-3-030-50097-9_​26
5.
go back to reference Falih, I., Grozavu, N., Kanawati, R., and Bennani, Yo., ANCA: Attributed network clustering algorithm, Complex Networks & Their Applications VI, Cherifi, C., Cherifi, H., Karsai, M., and Musolesi, M., Eds., Studies in Computational Intelligence, vol. 689, Cham: Springer, 2017, pp. 241–252. https://doi.org/10.1007/978-3-319-72150-7_20 Falih, I., Grozavu, N., Kanawati, R., and Bennani, Yo., ANCA: Attributed network clustering algorithm, Complex Networks & Their Applications VI, Cherifi, C., Cherifi, H., Karsai, M., and Musolesi, M., Eds., Studies in Computational Intelligence, vol. 689, Cham: Springer, 2017, pp. 241–252.  https://​doi.​org/​10.​1007/​978-3-319-72150-7_​20
7.
go back to reference Dang, T. and Viennet, E., Community detection based on structural and attribute similarities, Int. Conf. on Digital Society (ICDS), 2012, pp. 7–12. Dang, T. and Viennet, E., Community detection based on structural and attribute similarities, Int. Conf. on Digital Society (ICDS), 2012, pp. 7–12.
8.
go back to reference McQueen, J. et al., Some methods for classification and analysis of multivariate observations, Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, 1961, vol. 1, no. 14, pp. 281–297. McQueen, J. et al., Some methods for classification and analysis of multivariate observations, Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, 1961, vol. 1, no. 14, pp. 281–297.
10.
go back to reference Navarro, M., Allen, G.I., and Weylandt, M., Network clustering for latent state and changepoint detection, 2021. arXiv:2111.01273 [cs.SI] Navarro, M., Allen, G.I., and Weylandt, M., Network clustering for latent state and changepoint detection, 2021. arXiv:2111.01273 [cs.SI]
11.
go back to reference Yang, Sh., Verma, S., Cai, B., Jiang, J., Yu, K., Chen, F., and Yu, Sh., Variational co-embedding learning for attributed network clustering, 2021. arXiv:2104.07295 [cs.LG] Yang, Sh., Verma, S., Cai, B., Jiang, J., Yu, K., Chen, F., and Yu, Sh., Variational co-embedding learning for attributed network clustering, 2021. arXiv:2104.07295 [cs.LG]
12.
go back to reference Bo, D., Wang, X., Shi, Ch., Zhu, M., Lu, E., and Cui, P., Structural deep clustering network, WWW ’20: Proc. Web Conf., Taipei, Taiwan, 2020, Huang, Ye., King, I., Liu, T.-Yan, and van Steen, M., Eds., New York: Association for Computing Machinery, 2020, pp. 1400–1410. https://doi.org/10.1145/3366423.3380214 Bo, D., Wang, X., Shi, Ch., Zhu, M., Lu, E., and Cui, P., Structural deep clustering network, WWW ’20: Proc. Web Conf., Taipei, Taiwan, 2020, Huang, Ye., King, I., Liu, T.-Yan, and van Steen, M., Eds., New York: Association for Computing Machinery, 2020, pp. 1400–1410.  https://​doi.​org/​10.​1145/​3366423.​3380214
13.
14.
go back to reference Meng, Z., Liang, Sh., Bao, H., and Zhang, X., Co-embedding attributed networks, WSDM ’19: Proc. Twelgth ACM Int. Conf. on Web Search and Data Mining, Melbourne, 2019, New York: Association for Computing Machinery, 2019, pp. 393–401. https://doi.org/10.1145/3289600.3291015 Meng, Z., Liang, Sh., Bao, H., and Zhang, X., Co-embedding attributed networks, WSDM ’19: Proc. Twelgth ACM Int. Conf. on Web Search and Data Mining, Melbourne, 2019, New York: Association for Computing Machinery, 2019, pp. 393–401.  https://​doi.​org/​10.​1145/​3289600.​3291015
18.
go back to reference Kumar, A. and Daume, H., III, A co-training approach for multi-view spectral clustering, ICML’11: Proc. 28th Int. Conf. on Machine Learning, Bellevue, Wash., 2011, Madison, Wis., Omnipress, 2011, pp. 393–400. Kumar, A. and Daume, H., III, A co-training approach for multi-view spectral clustering, ICML’11: Proc. 28th Int. Conf. on Machine Learning, Bellevue, Wash., 2011, Madison, Wis., Omnipress, 2011, pp. 393–400.
19.
go back to reference Kumar, A., Rai, P., and Daume, H., Co-regularized multi-view spectral clustering, Advances in Neural Information Processing Systems, Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K.Q., Eds., Curran Associates, 2011, pp. 1413–1421. Kumar, A., Rai, P., and Daume, H., Co-regularized multi-view spectral clustering, Advances in Neural Information Processing Systems, Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K.Q., Eds., Curran Associates, 2011, pp. 1413–1421.
20.
go back to reference Ni, J., Tong, H., Fan, W., and Zhang, X., Flexible and robust multi-network clustering, KDD ’15: Proc. 21th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Sydney, 2015, New York: Association for Computing Machinery, 2015, pp. 835–844. https://doi.org/10.1145/2783258.2783262 Ni, J., Tong, H., Fan, W., and Zhang, X., Flexible and robust multi-network clustering, KDD ’15: Proc. 21th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Sydney, 2015, New York: Association for Computing Machinery, 2015, pp. 835–844.  https://​doi.​org/​10.​1145/​2783258.​2783262
21.
go back to reference 20 Newsgroups. http://qwone.com/~jason/20Newsgroups/. Cited April 9, 2022. 20 Newsgroups. http://​qwone.​com/​~jason/​20Newsgroups/​.​ Cited April 9, 2022.
Metadata
Title
Computer Network Clustering Methods in Cybersecurity Problems
Authors
E. Yu. Pavlenko
I. S. Eremenko
A. D. Fatin
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Automatic Control and Computer Sciences / Issue 8/2022
Print ISSN: 0146-4116
Electronic ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411622080156

Other articles of this Issue 8/2022

Automatic Control and Computer Sciences 8/2022 Go to the issue