Skip to main content
Top
Published in: Mechanics of Composite Materials 5/2021

23-11-2021

Computer Simulation of Composites Consisting of Piezoceramic Matrix with Metal Inclusions and Pores

Authors: A. B. Kudimova, A. V. Nasedkin, A. A. Nasedkina, A. Rajagopal

Published in: Mechanics of Composite Materials | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The problem on determining the effective properties of mixed composites consisting of a piezoceramic matrix with metal inclusions and pores is investigated. Composites with microporosity and mesoporosity are compared. For microporous composites, two-level models of two-phase structures are used. At the microlevel, the effective properties of a piezoceramic material with pores are first determined, and then, at the mesolevel, the homogenization problem for a piezoelectric material with effective properties found at the first stage and with conductive inclusions is solved. Mesoporous composites are considered as three-phase composites with a piezoceramic matrix, inclusions, and pores located at boundaries of inclusions. Homogenization problems are solved numerically in the ANSYS finite element package for representative volumes with closed structures of inclusions and pores. Inclusions and pores are modeled as piezoelectric materials with extreme values of stiffness moduli and dielectric constants. It is noted that this approach preserves the energy balance between the composite medium and the homogeneous reference medium. As an example, calculations of the effective moduli of composites consisting of piezoceramics based on barium titanate, nickel inclusions, and pores are performed. The effective moduli in relation to the volume fractions of inclusions and pores, as well as on the number of mesoscale pores on the boundaries of the inclusions, are investigated. An analysis of the influence of porosity type on the effective properties of the piezocomposites considered is presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Du, X. Lin, H. Zheng, B. Qu, Y. Huang, and D. Chu, “Colossal permittivity in percolative ceramic / metal dielectric composites,” J. Alloys Compd., 663, 848-861 (2016).CrossRef H. Du, X. Lin, H. Zheng, B. Qu, Y. Huang, and D. Chu, “Colossal permittivity in percolative ceramic / metal dielectric composites,” J. Alloys Compd., 663, 848-861 (2016).CrossRef
2.
go back to reference C.-W. Nan, Y. Shen, and J. Ma, “Physical properties of composites near percolation,” Annu. Rev. Mater. Res., 40, No. 1, 131-151 (2010).CrossRef C.-W. Nan, Y. Shen, and J. Ma, “Physical properties of composites near percolation,” Annu. Rev. Mater. Res., 40, No. 1, 131-151 (2010).CrossRef
3.
go back to reference C. Pecharroman, F. Esteban-Betegon, J. F. Bartolome, S. Lopez-Esteban, and J. S. Moya, “New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant (εr ≈ 80,000),” Adv. Mater., 13, No. 20, 1541-1544 (2001).CrossRef C. Pecharroman, F. Esteban-Betegon, J. F. Bartolome, S. Lopez-Esteban, and J. S. Moya, “New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant (εr ≈ 80,000),” Adv. Mater., 13, No. 20, 1541-1544 (2001).CrossRef
4.
go back to reference M. Saleem, I. S. Kim, J. S. Song, S. J. Jeong, M. S. Kim, and S. Yoon, “Synthesis, sintering and dielectric properties of a BaTiO3-Ni composite,” Ceram. Int., 40, 7329-7335 (2014).CrossRef M. Saleem, I. S. Kim, J. S. Song, S. J. Jeong, M. S. Kim, and S. Yoon, “Synthesis, sintering and dielectric properties of a BaTiO3-Ni composite,” Ceram. Int., 40, 7329-7335 (2014).CrossRef
5.
go back to reference P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, M. J. Diánez, A. Perejón, and J. M. Criado, “Mechanochemical preparation of BaTiO3-Ni nanocomposites with high dielectric constant,” Compos. Struct., 92, 2236-2240 (2010).CrossRef P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, M. J. Diánez, A. Perejón, and J. M. Criado, “Mechanochemical preparation of BaTiO3-Ni nanocomposites with high dielectric constant,” Compos. Struct., 92, 2236-2240 (2010).CrossRef
6.
go back to reference W.-H. Tuan and Y.-C. Huang, “High percolative BaTiO3-Ni nanocomposites,” Mater. Chem. Phys., 118, 187-190 (2009).CrossRef W.-H. Tuan and Y.-C. Huang, “High percolative BaTiO3-Ni nanocomposites,” Mater. Chem. Phys., 118, 187-190 (2009).CrossRef
7.
go back to reference M. Valant, A. Dakskobler, M. Ambrozic, and T. Kosmac, “Giant permittivity phenomena in layered BaTiO3-Ni composites,” J. Eur. Ceram. Soc., 26, No. 6, 891-896 (2006).CrossRef M. Valant, A. Dakskobler, M. Ambrozic, and T. Kosmac, “Giant permittivity phenomena in layered BaTiO3-Ni composites,” J. Eur. Ceram. Soc., 26, No. 6, 891-896 (2006).CrossRef
8.
go back to reference H.-I. Hsiang, F.-S. Yen, and C.-Y. Huang, “Effects of porosity on dielectric properties of BaTiO3 ceramics,” Jpn. J. Appl. Phys., 34, No. 4R, 1922-1925 (1995).CrossRef H.-I. Hsiang, F.-S. Yen, and C.-Y. Huang, “Effects of porosity on dielectric properties of BaTiO3 ceramics,” Jpn. J. Appl. Phys., 34, No. 4R, 1922-1925 (1995).CrossRef
9.
go back to reference V. A. Lukacs, R. Stanculescu, L. Curecheriu, C. E. Ciomaga, N. Horchidan, C. Cioclea, and L. Mitoseriu, “Structural and functional properties of BaTiO3 porous ceramics produced by using pollen as sacrificial template,” Ceram. Int., 46, 523-530 (2020).CrossRef V. A. Lukacs, R. Stanculescu, L. Curecheriu, C. E. Ciomaga, N. Horchidan, C. Cioclea, and L. Mitoseriu, “Structural and functional properties of BaTiO3 porous ceramics produced by using pollen as sacrificial template,” Ceram. Int., 46, 523-530 (2020).CrossRef
10.
go back to reference L. Lv, Y. Wang, L. Gan, Q. Liu, and J. -P. Zhou, “Sintering process effect on the BaTiO3 ceramic properties with the hydrothermally prepared powders,” J. Mater. Sci. Mater. Electron., 29, 14883-14889 (2018).CrossRef L. Lv, Y. Wang, L. Gan, Q. Liu, and J. -P. Zhou, “Sintering process effect on the BaTiO3 ceramic properties with the hydrothermally prepared powders,” J. Mater. Sci. Mater. Electron., 29, 14883-14889 (2018).CrossRef
11.
go back to reference V. P. Pavlović, M. V. Nikolić, Z. Nicolić, G. Branković, L. Živković, V. B. Pavlović, and M. M. Ristić, “Microstructure evolution and electric properties of mechanically activated BaTiO3 ceramics,” J. Eur. Ceram. Soc., 27, 575-579 (2007).CrossRef V. P. Pavlović, M. V. Nikolić, Z. Nicolić, G. Branković, L. Živković, V. B. Pavlović, and M. M. Ristić, “Microstructure evolution and electric properties of mechanically activated BaTiO3 ceramics,” J. Eur. Ceram. Soc., 27, 575-579 (2007).CrossRef
12.
go back to reference A. N. Rybyanets and A. A. Rybyanets Ceramic piezocomposites: Modeling, technology, and characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 58, 1757-1773 (2011). A. N. Rybyanets and A. A. Rybyanets Ceramic piezocomposites: Modeling, technology, and characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 58, 1757-1773 (2011).
13.
go back to reference A. B. Kudimova and A. V. Nasedkin, “Analysis of porosity influence on the effective moduli of ceramic matrix PZT composite using the simplified finite element model,” J. Adv. Dielectr., 9, No. 6, 1950043 (9 pages) (2019). A. B. Kudimova and A. V. Nasedkin, “Analysis of porosity influence on the effective moduli of ceramic matrix PZT composite using the simplified finite element model,” J. Adv. Dielectr., 9, No. 6, 1950043 (9 pages) (2019).
14.
go back to reference A. B. Kudimova and A. V. Nasedkin, “Finite element analysis of the effective properties of corundum-containing piezoelectric ceramics with different-scale pores,” Computational Mechanics of Continuous Media., 13, No. 1, 44-59 (2020).CrossRef A. B. Kudimova and A. V. Nasedkin, “Finite element analysis of the effective properties of corundum-containing piezoelectric ceramics with different-scale pores,” Computational Mechanics of Continuous Media., 13, No. 1, 44-59 (2020).CrossRef
15.
go back to reference G. Martinez-Ayuso, M. I. Friswell, S. Adhikari, H. H. Khodaparast, and H. Berger, “Homogenization of porous piezoelectric materials,” Int. J. Solids Struct., 113-114, 218-229 (2017).CrossRef G. Martinez-Ayuso, M. I. Friswell, S. Adhikari, H. H. Khodaparast, and H. Berger, “Homogenization of porous piezoelectric materials,” Int. J. Solids Struct., 113-114, 218-229 (2017).CrossRef
16.
go back to reference N. Mawassy, H. Reda, J.-F. Ganghoffer, V. A. Eremeyev, and H. Lakiss, “A variational approach of homogenization of piezoelectric composites towards piezoelectric and flexoelectric effective media,” Int. J. Eng. Sci., 158, 103410 (23 pages) (2021). N. Mawassy, H. Reda, J.-F. Ganghoffer, V. A. Eremeyev, and H. Lakiss, “A variational approach of homogenization of piezoelectric composites towards piezoelectric and flexoelectric effective media,” Int. J. Eng. Sci., 158, 103410 (23 pages) (2021).
17.
go back to reference N. Mishra and K. Das, “A Mori–Tanaka based micromechanical model for predicting the effective electroelastic properties of orthotropic piezoelectric composites with spherical inclusions,” SN Appl. Sci., 2, 1206 (14 pages) (2020). N. Mishra and K. Das, “A Mori–Tanaka based micromechanical model for predicting the effective electroelastic properties of orthotropic piezoelectric composites with spherical inclusions,” SN Appl. Sci., 2, 1206 (14 pages) (2020).
18.
go back to reference E. Rohan and V. Lukeš, “Homogenization of the fluid-saturated piezoelectric porous media,” Int. J. Solids Struct., 147, 110-125 (2018).CrossRef E. Rohan and V. Lukeš, “Homogenization of the fluid-saturated piezoelectric porous media,” Int. J. Solids Struct., 147, 110-125 (2018).CrossRef
19.
go back to reference M. Hori and S. Nemat-Nasser, “Universal bounds for effective piezoelectric moduli,” Mech. Mater., 30, No. 1, 1-19 (1998).CrossRef M. Hori and S. Nemat-Nasser, “Universal bounds for effective piezoelectric moduli,” Mech. Mater., 30, No. 1, 1-19 (1998).CrossRef
20.
go back to reference A. V. Nasedkin and M. S. Shevtsova, “Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity,” Ferroelectrics and superconductors: Properties and applications, Ed. I. A. Parinov-N. Y.: Nova Sci. Publ., Ch. 7, 231-254 (2011). A. V. Nasedkin and M. S. Shevtsova, “Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity,” Ferroelectrics and superconductors: Properties and applications, Ed. I. A. Parinov-N. Y.: Nova Sci. Publ., Ch. 7, 231-254 (2011).
21.
go back to reference R. E. Newnham, D. P. Skinner, and L. E. Cross, “Connectivity and piezoelectric-pyroelectric composites,” Mater. Res. Bull., 13, 525-536 (1978).CrossRef R. E. Newnham, D. P. Skinner, and L. E. Cross, “Connectivity and piezoelectric-pyroelectric composites,” Mater. Res. Bull., 13, 525-536 (1978).CrossRef
22.
go back to reference A. V. Nasedkin, A. A. Nasedkina, and M. E. Nassar, “Homogenization of porous piezocomposites with extremal properties at pore boundaries by the method of effective moduli,” Izv. RAS. MTT., No. 6, 82-92 (2020). A. V. Nasedkin, A. A. Nasedkina, and M. E. Nassar, “Homogenization of porous piezocomposites with extremal properties at pore boundaries by the method of effective moduli,” Izv. RAS. MTT., No. 6, 82-92 (2020).
23.
go back to reference A. V. Nasedkin and M. E. Nassar, “Effective properties of a porous inhomogeneously polarized by direction piezoceramic material with full metalized pore boundaries: finite element analysis,” J. Adv. Dielectr., 10, No. 5, 2050018 (10 pages) (2020). A. V. Nasedkin and M. E. Nassar, “Effective properties of a porous inhomogeneously polarized by direction piezoceramic material with full metalized pore boundaries: finite element analysis,” J. Adv. Dielectr., 10, No. 5, 2050018 (10 pages) (2020).
24.
go back to reference A. V. Nasedkin, A. A. Nasedkina, M. E. Nassar, and A. N. Rybyanets, “Effective properties of piezoceramics with metal inclusions: numerical analysis,” Ferroelectrics, 571, No. 1, 263-267 (2021).CrossRef A. V. Nasedkin, A. A. Nasedkina, M. E. Nassar, and A. N. Rybyanets, “Effective properties of piezoceramics with metal inclusions: numerical analysis,” Ferroelectrics, 571, No. 1, 263-267 (2021).CrossRef
26.
go back to reference A. B. Kudimova and A. V. Nasedkin, “On limit transitions in spatial problems of homogenization of two-component dielectric composites with extremal moduli of one of the phases,” Izv. Universities. North Caucasus. region. Naturally. science., No. 1, 25-33 (2021). A. B. Kudimova and A. V. Nasedkin, “On limit transitions in spatial problems of homogenization of two-component dielectric composites with extremal moduli of one of the phases,” Izv. Universities. North Caucasus. region. Naturally. science., No. 1, 25-33 (2021).
27.
go back to reference A. Nasedkin, A. Nasedkina, and A. Rybyanets, “Finite-element simulation of effective properties of microporous piezoceramic material with metallized pore surfaces,” Ferroelectrics., 508, 100-107 (2017).CrossRef A. Nasedkin, A. Nasedkina, and A. Rybyanets, “Finite-element simulation of effective properties of microporous piezoceramic material with metallized pore surfaces,” Ferroelectrics., 508, 100-107 (2017).CrossRef
28.
go back to reference D. Berlincourt and H. Jaffe, “Elastic and piezoelectric coefficients of single-crystal Barium Titanate,” Phys. Rev., 111, No. 1, 143-148 (1958).CrossRef D. Berlincourt and H. Jaffe, “Elastic and piezoelectric coefficients of single-crystal Barium Titanate,” Phys. Rev., 111, No. 1, 143-148 (1958).CrossRef
29.
go back to reference J. Gao, D. Xue, W. Liu, C. Zhou, and X. Ren. “Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications,” Actuators., 6, No. 3, 24 (10 pages) (2017). J. Gao, D. Xue, W. Liu, C. Zhou, and X. Ren. “Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications,” Actuators., 6, No. 3, 24 (10 pages) (2017).
30.
go back to reference T. E. Gerasimenko, N. V. Kurbatova, D. K. Nadolin, A. V. Nasedkin, A. A. Nasedkina, P. A. Oganesyan, A. S. Skaliukh, and A. N. Soloviev, “Homogenization of piezoelectric composites with internal structure and inhomogeneous polarization in ACELAN-COMPOS finite-element package, Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials, Advanced Structured Materials., 109, Ed. M. A. Sumbatyan, Singapore: Springer, Ch. 8, 113-131 (2019). T. E. Gerasimenko, N. V. Kurbatova, D. K. Nadolin, A. V. Nasedkin, A. A. Nasedkina, P. A. Oganesyan, A. S. Skaliukh, and A. N. Soloviev, “Homogenization of piezoelectric composites with internal structure and inhomogeneous polarization in ACELAN-COMPOS finite-element package, Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials, Advanced Structured Materials., 109, Ed. M. A. Sumbatyan, Singapore: Springer, Ch. 8, 113-131 (2019).
31.
go back to reference R. W. C. Lewis., A. C. E. Dent, R. Stevens, and C. R. Bowen, “Microstructural modeling of the polarization and properties of porous ferroelectrics,” Smart Mater. Struct., 20, 085002 (6 pages) (2011). R. W. C. Lewis., A. C. E. Dent, R. Stevens, and C. R. Bowen, “Microstructural modeling of the polarization and properties of porous ferroelectrics,” Smart Mater. Struct., 20, 085002 (6 pages) (2011).
Metadata
Title
Computer Simulation of Composites Consisting of Piezoceramic Matrix with Metal Inclusions and Pores
Authors
A. B. Kudimova
A. V. Nasedkin
A. A. Nasedkina
A. Rajagopal
Publication date
23-11-2021
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 5/2021
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-021-09992-9

Other articles of this Issue 5/2021

Mechanics of Composite Materials 5/2021 Go to the issue

Premium Partners