Skip to main content
Top
Published in: Metallurgist 7-8/2021

16-11-2021

Computer Simulation of the Thermal Processing of Grinding Balls

Authors: A. A. Sidorov, A. A. Semenov, I. E. Lanovenko, I. K. Galim’yanov, R. A. Il’inykh, A. Yu. Bespamyatnykh

Published in: Metallurgist | Issue 7-8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

DEFORM and JMatPro software was used to calculate the phase composition and strength characteristics of grinding balls after thermal processing. The influence of variations in the chemical composition of the alloy on the phase composition and strength of the grinding ball after thermal processing was investigated. A computer model of the hardening process was created, which was used to evaluate the phase composition and hardness of the grinding ball after thermal processing. The minimum depth of the hardened layer was estimated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. N. Shvedov, I. K. Galimyanov, and M. A. Kazakovtsev, “Obtaining grinding balls with high surface and normalized volumetric hardness,” Metallurg, No. 6, 16–22 (2020). K. N. Shvedov, I. K. Galimyanov, and M. A. Kazakovtsev, “Obtaining grinding balls with high surface and normalized volumetric hardness,” Metallurg, No. 6, 16–22 (2020).
2.
go back to reference D. V. Stalinsky, A. S. Rudyuk, and V. K. Soleny, “The choice of material and technology for thermal processing of grinding balls working predominantly under conditions of abrasive wear,” Stal’, No. 6, 64–69 (2017). D. V. Stalinsky, A. S. Rudyuk, and V. K. Soleny, “The choice of material and technology for thermal processing of grinding balls working predominantly under conditions of abrasive wear,” Stal’, No. 6, 64–69 (2017).
3.
go back to reference J. Walters, W. T. Wu, A. Arvind, Li G., D. Lambert, and J. Tang, “Recent development of process simulation for industrial applications,” J. Mater. Process. Technol., 98 (2), 205–211 (2000).CrossRef J. Walters, W. T. Wu, A. Arvind, Li G., D. Lambert, and J. Tang, “Recent development of process simulation for industrial applications,” J. Mater. Process. Technol., 98 (2), 205–211 (2000).CrossRef
4.
go back to reference M. M. Skripalenko and M. N. Skripalenko, “On choosing software for simulating metal-forming processes,” Metallurgist, 57, 3–7 (2013).CrossRef M. M. Skripalenko and M. N. Skripalenko, “On choosing software for simulating metal-forming processes,” Metallurgist, 57, 3–7 (2013).CrossRef
5.
go back to reference B. A. Romantsev, M. M. Skripalenko, T. B. Huy, M. N. Skripalenko, Yu. A. Gladkov, and A. A. Gartvig, “Computer simulation of piercing in a four-high screw rolling mill,” Metallurgist, 61, 729–735 (2018).CrossRef B. A. Romantsev, M. M. Skripalenko, T. B. Huy, M. N. Skripalenko, Yu. A. Gladkov, and A. A. Gartvig, “Computer simulation of piercing in a four-high screw rolling mill,” Metallurgist, 61, 729–735 (2018).CrossRef
6.
go back to reference F. Jamal, S. Rath, and B. Acherjee, “Process modelling of flat rolling of steel,” Adv. Mater. Process. Technol., No. 5 (1), 104–113 (2019). F. Jamal, S. Rath, and B. Acherjee, “Process modelling of flat rolling of steel,” Adv. Mater. Process. Technol., No. 5 (1), 104–113 (2019).
7.
go back to reference S. A. Vorontsov, I. Zh. Kharisov, and Yu. A. Gladkov, “Application of the QForm modeling program at the KAMAZ forging plant,” Kuznech.-shtampovoch. Proizvod. Obrabot. Mater. Davlen., No. 12, 40–44 (2016). S. A. Vorontsov, I. Zh. Kharisov, and Yu. A. Gladkov, “Application of the QForm modeling program at the KAMAZ forging plant,” Kuznech.-shtampovoch. Proizvod. Obrabot. Mater. Davlen., No. 12, 40–44 (2016).
8.
go back to reference T. Sugimoto and D.Y. Ju, “Influence of thermal boundary conditions on the results of heat treatment simulation,” Mater. Trans., 59, No. 6, 950–956 (2018).CrossRef T. Sugimoto and D.Y. Ju, “Influence of thermal boundary conditions on the results of heat treatment simulation,” Mater. Trans., 59, No. 6, 950–956 (2018).CrossRef
9.
go back to reference I. Draganov and D. Gospodinov, “Experimental data and simulation by the finite element method of the cylindrical steel shaft quenching in water,” Mater. Sci. Non-Equilibrium Phase Transform., 4, No. 3, 96–98 (2018). I. Draganov and D. Gospodinov, “Experimental data and simulation by the finite element method of the cylindrical steel shaft quenching in water,” Mater. Sci. Non-Equilibrium Phase Transform., 4, No. 3, 96–98 (2018).
10.
go back to reference H. Birkhofer, T. Lubben, and B. Taylor, “Optimizing mandrel dimensions for a fixture hardening process of high-strength steel aerospace parts by finite element simulation,” Metals, 10, No. 3, 303 (2020). H. Birkhofer, T. Lubben, and B. Taylor, “Optimizing mandrel dimensions for a fixture hardening process of high-strength steel aerospace parts by finite element simulation,” Metals, 10, No. 3, 303 (2020).
11.
go back to reference P. V. Krot, S. V. Bobyr, and M. A. Dedik, “Simulation of backup rolls quenching with experimental study of deep cryogenic treatment,” Int. J. Microstruct. Mater. Prop., 12, No. 3/4, 259–275 (2017). P. V. Krot, S. V. Bobyr, and M. A. Dedik, “Simulation of backup rolls quenching with experimental study of deep cryogenic treatment,” Int. J. Microstruct. Mater. Prop., 12, No. 3/4, 259–275 (2017).
12.
go back to reference A. Sugianto, M. Narazaki, M. Kogawara, and A. Shirayori, “Numerical simulation and experimental verification of carburizing quenching process of SCr420H steel helical gear,” J. Mater. Process. Technol., 209 (7), 3597–3609 (2009).CrossRef A. Sugianto, M. Narazaki, M. Kogawara, and A. Shirayori, “Numerical simulation and experimental verification of carburizing quenching process of SCr420H steel helical gear,” J. Mater. Process. Technol., 209 (7), 3597–3609 (2009).CrossRef
13.
go back to reference E. J. Mittemeijer, Steel Heat Treating Fundamentals and Processes, ASM Handbook A, 4 (2013). E. J. Mittemeijer, Steel Heat Treating Fundamentals and Processes, ASM Handbook A, 4 (2013).
14.
go back to reference M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhkov, “Methodology for the cooling process simulation during thermal processing of steel products of simple shape,” Stal’, No. 10, 90–94 (2013). M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhkov, “Methodology for the cooling process simulation during thermal processing of steel products of simple shape,” Stal’, No. 10, 90–94 (2013).
15.
go back to reference B. Liscic and T. Filetin, “Measurement of quenching intensity, calculation of heat transfer coefficient and global database of liquid quenchants,” Mater. Eng.-Materialove Inzinierstvo (MEMI), 19, No. 2, 52–63 (2012). B. Liscic and T. Filetin, “Measurement of quenching intensity, calculation of heat transfer coefficient and global database of liquid quenchants,” Mater. Eng.-Materialove Inzinierstvo (MEMI), 19, No. 2, 52–63 (2012).
16.
go back to reference R. Choteborsky and M. Linda, “Prediction of mechanical properties of quench hardening steel,” Sci. Agricult. Bohemica, 46, No. 1, 26–32 (2015).CrossRef R. Choteborsky and M. Linda, “Prediction of mechanical properties of quench hardening steel,” Sci. Agricult. Bohemica, 46, No. 1, 26–32 (2015).CrossRef
17.
go back to reference L.V. Petrash, Quenching Media [in Russian], Mashgiz, Moscow–Leningrad (1959). L.V. Petrash, Quenching Media [in Russian], Mashgiz, Moscow–Leningrad (1959).
18.
go back to reference N. Saunders, et al., “Using JMatPro to model materials properties and behavior,” JOM, 55, No. 12, 60–65 (2003).CrossRef N. Saunders, et al., “Using JMatPro to model materials properties and behavior,” JOM, 55, No. 12, 60–65 (2003).CrossRef
20.
go back to reference Z. Guo, et al., “Material properties for process simulation,” Mater. Sci. Eng.: A, 499, No. 1–2, 7–13 (2009).CrossRef Z. Guo, et al., “Material properties for process simulation,” Mater. Sci. Eng.: A, 499, No. 1–2, 7–13 (2009).CrossRef
21.
go back to reference B. Liscic, H. M. Tensi, L. C. F. Canale, G. E. Totten, et al., Quenching Theory and Technology, 2-nd Ed, CRC Press, Taylor & Francis Group (2010).CrossRef B. Liscic, H. M. Tensi, L. C. F. Canale, G. E. Totten, et al., Quenching Theory and Technology, 2-nd Ed, CRC Press, Taylor & Francis Group (2010).CrossRef
22.
go back to reference H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Butterworth–Heinemann (2017). H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Butterworth–Heinemann (2017).
23.
go back to reference DEFORM-3D® User’s Manual. Scientific Forming Technologies Corporation, Columbia Ohio (2006). DEFORM-3D® User’s Manual. Scientific Forming Technologies Corporation, Columbia Ohio (2006).
Metadata
Title
Computer Simulation of the Thermal Processing of Grinding Balls
Authors
A. A. Sidorov
A. A. Semenov
I. E. Lanovenko
I. K. Galim’yanov
R. A. Il’inykh
A. Yu. Bespamyatnykh
Publication date
16-11-2021
Publisher
Springer US
Published in
Metallurgist / Issue 7-8/2021
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01210-0

Other articles of this Issue 7-8/2021

Metallurgist 7-8/2021 Go to the issue

Premium Partners