Skip to main content
Top

2025 | Book

Computer Vision – ECCV 2024

18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part XLVI

insite
SEARCH

About this book

The multi-volume set of LNCS books with volume numbers 15059 upto 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024.

The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as Computer vision, Machine learning, Deep neural networks, Reinforcement learning, Object recognition, Image classification, Image processing, Object detection, Semantic segmentation, Human pose estimation, 3D reconstruction, Stereo vision, Computational photography, Neural networks, Image coding, Image reconstruction and Motion estimation.

Table of Contents

Frontmatter
Teddy: Efficient Large-Scale Dataset Distillation via Taylor-Approximated Matching
Abstract
Dataset distillation or condensation refers to compressing a large-scale dataset into a much smaller one, enabling models trained on this synthetic dataset to generalize effectively on real data. Tackling this challenge, as defined, relies on a bi-level optimization algorithm: a novel model is trained in each iteration within a nested loop, with gradients propagated through an unrolled computation graph. However, this approach incurs high memory and time complexity, posing difficulties in scaling up to large datasets such as ImageNet. Addressing these concerns, this paper introduces Teddy, a Taylor-approximated dataset distillation framework designed to handle large-scale dataset and enhance efficiency. On the one hand, backed up by theoretical analysis, we propose a memory-efficient approximation derived from Taylor expansion, which transforms the original form dependent on multi-step gradients to a first-order one. On the other hand, rather than repeatedly training a novel model in each iteration, we unveil that employing a pre-cached pool of weak models, which can be generated from a single base model, enhances both time efficiency and performance concurrently, particularly when dealing with large-scale datasets. Extensive experiments demonstrate that the proposed Teddy attains state-of-the-art efficiency and performance on the Tiny-ImageNet and original-sized ImageNet-1K dataset, notably surpassing prior methods by up to 12.8%, while reducing 46.6% runtime. Our code will be available at https://​github.​com/​Lexie-YU/​Teddy.
Ruonan Yu, Songhua Liu, Jingwen Ye, Xinchao Wang
Rethinking and Improving Visual Prompt Selection for In-Context Learning Segmentation
Abstract
As a fundamental and extensively studied task in computer vision, image segmentation aims to locate and identify different semantic concepts at the pixel level. Recently, inspired by In-Context Learning (ICL), several generalist segmentation frameworks have been proposed, providing a promising paradigm for segmenting specific objects. However, existing works mostly ignore the value of visual prompts or simply apply similarity sorting to select contextual examples. In this paper, we focus on rethinking and improving the example selection strategy. By comprehensive comparisons, we first demonstrate that ICL-based segmentation models are sensitive to different contexts. Furthermore, empirical evidence indicates that the diversity of contextual prompts plays a crucial role in guiding segmentation. Based on the above insights, we propose a new stepwise context search method. Different from previous works, we construct a small yet rich candidate pool and adaptively search the well-matched contexts. More importantly, this method effectively reduces the annotation cost by compacting the search space. Extensive experiments show that our method is an effective strategy for selecting examples and enhancing segmentation performance https://​github.​com/​LanqingL/​SCS.
Wei Suo, Lanqing Lai, Mengyang Sun, Hanwang Zhang, Peng Wang, Yanning Zhang
-VTON: Dynamic Semantics Disentangling for Differential Diffusion Based Virtual Try-On
Abstract
In this paper, we introduce \(\textrm{D}^4\)-VTON, an innovative solution for image-based virtual try-on. We address challenges from previous studies, such as semantic inconsistencies before and after garment warping, and reliance on static, annotation-driven clothing parsers. Additionally, we tackle the complexities in diffusion-based VTON models when handling simultaneous tasks like inpainting and denoising. Our approach utilizes two key technologies: Firstly, Dynamic Semantics Disentangling Modules (DSDMs) extract abstract semantic information from garments to create distinct local flows, improving precise garment warping in a self-discovered manner. Secondly, by integrating a Differential Information Tracking Path (DITP), we establish a novel diffusion-based VTON paradigm. This path captures differential information between incomplete try-on inputs and their complete versions, enabling the network to handle multiple degradations independently, thereby minimizing learning ambiguities and achieving realistic results with minimal overhead. Extensive experiments demonstrate that \(\textrm{D}^4\)-VTON significantly outperforms existing methods in both quantitative metrics and qualitative evaluations, demonstrating its capability in generating realistic images and ensuring semantic consistency. Code is available at https://​github.​com/​Jerome-Young/​D4-VTON.
Zhaotong Yang, Zicheng Jiang, Xinzhe Li, Huiyu Zhou, Junyu Dong, Huaidong Zhang, Yong Du
TC4D: Trajectory-Conditioned Text-to-4D Generation
Abstract
Recent techniques for text-to-4D generation synthesize dynamic 3D scenes using supervision from pre-trained text-to-video models. However, existing representations, such as deformation models or time-dependent neural representations, are limited in the amount of motion they can generate—they cannot synthesize motion extending far beyond the bounding box used for volume rendering. The lack of a more flexible motion model contributes to the gap in realism between 4D generation methods and recent, near-photorealistic video generation models. Here, we propose TC4D: trajectory-conditioned text-to-4D generation, an approach that factors motion into global and local components. We represent the global motion of a scene’s bounding box using rigid transformation along a trajectory parameterized by a spline. We learn local deformations that conform to the global trajectory using supervision from a text-to-video model. Our approach enables synthesis of scenes animated along arbitrary trajectories, compositional scene generation, and significant improvements to the realism and amount of generated motion, which we evaluate qualitatively and through a user study. Video results can be viewed on our website: https://​sherwinbahmani.​github.​io/​tc4d.
Sherwin Bahmani, Xian Liu, Wang Yifan, Ivan Skorokhodov, Victor Rong, Ziwei Liu, Xihui Liu, Jeong Joon Park, Sergey Tulyakov, Gordon Wetzstein, Andrea Tagliasacchi, David B. Lindell
Blind Image Deconvolution by Generative-Based Kernel Prior and Initializer via Latent Encoding
Abstract
Blind image deconvolution (BID) is a classic yet challenging problem in the field of image processing. Recent advances in deep image prior (DIP) have motivated a series of DIP-based approaches, demonstrating remarkable success in BID. However, due to the high non-convexity of the inherent optimization process, these methods are notorious for their sensitivity to the initialized kernel. To alleviate this issue and further improve their performance, we propose a new framework for BID that better considers the prior modeling and the initialization for blur kernels, leveraging a deep generative model. The proposed approach pre-trains a generative adversarial network-based kernel generator that aptly characterizes the kernel priors and a kernel initializer that facilitates a well-informed initialization for the blur kernel through latent space encoding. With the pre-trained kernel generator and initializer, one can obtain a high-quality initialization of the blur kernel, and enable optimization within a compact latent kernel manifold. Such a framework results in an evident performance improvement over existing DIP-based BID methods. Extensive experiments on different datasets demonstrate the effectiveness of the proposed method. Code is available at https://​github.​com/​jtaoz/​GKPILE-Deconvolution.
Jiangtao Zhang, Zongsheng Yue, Hui Wang, Qian Zhao, Deyu Meng
AdvDiff: Generating Unrestricted Adversarial Examples Using Diffusion Models
Abstract
Unrestricted adversarial attacks present a serious threat to deep learning models and adversarial defense techniques. They pose severe security problems for deep learning applications because they can effectively bypass defense mechanisms. However, previous attack methods often directly inject Projected Gradient Descent (PGD) gradients into the sampling of generative models, which are not theoretically provable and thus generate unrealistic examples by incorporating adversarial objectives, especially for GAN-based methods on large-scale datasets like ImageNet. In this paper, we propose a new method, called AdvDiff, to generate unrestricted adversarial examples with diffusion models. We design two novel adversarial guidance techniques to conduct adversarial sampling in the reverse generation process of diffusion models. These two techniques are effective and stable in generating high-quality, realistic adversarial examples by integrating gradients of the target classifier interpretably. Experimental results on MNIST and ImageNet datasets demonstrate that AdvDiff is effective in generating unrestricted adversarial examples, which outperforms state-of-the-art unrestricted adversarial attack methods in terms of attack performance and generation quality.
Xuelong Dai, Kaisheng Liang, Bin Xiao
Improving Text-Guided Object Inpainting with Semantic Pre-inpainting
Abstract
Recent years have witnessed the success of large text-to-image diffusion models and their remarkable potential to generate high-quality images. The further pursuit of enhancing the editability of images has sparked significant interest in the downstream task of inpainting a novel object described by a text prompt within a designated region in the image. Nevertheless, the problem is not trivial from two aspects: 1) Solely relying on one single U-Net to align text prompt and visual object across all the denoising timesteps is insufficient to generate desired objects; 2) The controllability of object generation is not guaranteed in the intricate sampling space of diffusion model. In this paper, we propose to decompose the typical single-stage object inpainting into two cascaded processes: 1) semantic pre-inpainting that infers the semantic features of desired objects in a multi-modal feature space; 2) high-fieldity object generation in diffusion latent space that pivots on such inpainted semantic features. To achieve this, we cascade a Transformer-based semantic inpainter and an object inpainting diffusion model, leading to a novel CAscaded Transformer-Diffusion (CAT-Diffusion) framework for text-guided object inpainting. Technically, the semantic inpainter is trained to predict the semantic features of the target object conditioning on unmasked context and text prompt. The outputs of the semantic inpainter then act as the informative visual prompts to guide high-fieldity object generation through a reference adapter layer, leading to controllable object inpainting. Extensive evaluations on OpenImages-V6 and MSCOCO validate the superiority of CAT-Diffusion against the state-of-the-art methods. Code is available at https://​github.​com/​Nnn-s/​CATdiffusion.
Yifu Chen, Jingwen Chen, Yingwei Pan, Yehao Li, Ting Yao, Zhineng Chen, Tao Mei
Personalized Federated Domain-Incremental Learning Based on Adaptive Knowledge Matching
Abstract
This paper focuses on Federated Domain-Incremental Learning (FDIL) where each client continues to learn incremental tasks where their domain shifts from each other. We propose a novel adaptive knowledge matching-based personalized FDIL approach (pFedDIL) which allows each client to alternatively utilize appropriate incremental task learning strategy on the correlation with the knowledge from previous tasks. More specifically, when a new task arrives, each client first calculates its local correlations with previous tasks. Then, the client can choose to adopt a new initial model or a previous model with similar knowledge to train the new task and simultaneously migrate knowledge from previous tasks based on these correlations. Furthermore, to identify the correlations between the new task and previous tasks for each client, we separately employ an auxiliary classifier to each target classification model and propose sharing partial parameters between the target classification model and the auxiliary classifier to condense model parameters. We conduct extensive experiments on several datasets of which results demonstrate that pFedDIL outperforms state-of-the-art methods by up to 14.35% in terms of average accuracy of all tasks.
Yichen Li, Wenchao Xu, Haozhao Wang, Yining Qi, Jingcai Guo, Ruixuan Li
ST-LDM: A Universal Framework for Text-Grounded Object Generation in Real Images
Abstract
We present a novel image editing scenario termed Text-grounded Object Generation (TOG), defined as generating a new object in the real image spatially conditioned by textual descriptions. Existing diffusion models exhibit limitations of spatial perception in complex real-world scenes, relying on additional modalities to enforce constraints, and TOG imposes heightened challenges on scene comprehension under the weak supervision of linguistic information. We propose a universal framework ST-LDM based on Swin-Transformer, which can be integrated into any latent diffusion model with training-free backward guidance. ST-LDM encompasses a global-perceptual autoencoder with adaptable compression scales and hierarchical visual features, parallel with deformable multimodal transformer to generate region-wise guidance for the subsequent denoising process. We transcend the limitation of traditional attention mechanisms that only focus on existing visual features by introducing deformable feature alignment to hierarchically refine spatial positioning fused with multi-scale visual and linguistic information. Extensive Experiments demonstrate that our model enhances the localization of attention mechanisms while preserving the generative capabilities inherent to diffusion models.
Xiangtian Xue, Jiasong Wu, Youyong Kong, Lotfi Senhadji, Huazhong Shu
RS-NeRF: Neural Radiance Fields from Rolling Shutter Images
Abstract
Neural Radiance Fields (NeRFs) have become increasingly popular because of their impressive ability for novel view synthesis. However, their effectiveness is hindered by the Rolling Shutter (RS) effects commonly found in most camera systems. To solve this, we present RS-NeRF, a method designed to synthesize normal images from novel views using input with RS distortions. This involves a physical model that replicates the image formation process under RS conditions and jointly optimizes NeRF parameters and camera extrinsic for each image row. We further address the inherent shortcomings of the basic RS-NeRF model by delving into the RS characteristics and developing algorithms to enhance its functionality. First, we impose a smoothness regularization to better estimate trajectories and improve the synthesis quality, in line with the camera movement prior. We also identify and address a fundamental flaw in the vanilla RS model by introducing a multi-sampling algorithm. This new approach improves the model’s performance by comprehensively exploiting the RGB data across different rows for each intermediate camera pose. Through rigorous experimentation, we demonstrate that RS-NeRF surpasses previous methods in both synthetic and real-world scenarios, proving its ability to correct RS-related distortions effectively. Codes and data available: https://​github.​com/​MyNiuuu/​RS-NeRF.
Muyao Niu, Tong Chen, Yifan Zhan, Zhuoxiao Li, Xiang Ji, Yinqiang Zheng
Region-Adaptive Transform with Segmentation Prior for Image Compression
Abstract
Learned Image Compression (LIC) has shown remarkable progress in recent years. Existing works commonly employ CNN-based or Transformer-based modules as transform methods for compression. However, there is no prior research on neural transform that focuses on specific regions. In response, we introduce the class-agnostic segmentation masks (i.e. semantic masks without category labels) for extracting region-adaptive contextual information. Our proposed module, Region-Adaptive Transform, applies adaptive convolutions on different regions guided by the masks. Additionally, we introduce a plug-and-play module named Scale Affine Layer to incorporate rich contexts from various regions. While there have been prior image compression efforts that involve segmentation masks as additional intermediate inputs, our approach differs significantly from them. Our advantages lie in that, to avoid extra bitrate overhead, we treat these masks as privilege information, which is accessible during the model training stage but not required during the inference phase. To the best of our knowledge, we are the first to employ class-agnostic masks as privilege information and achieve superior performance in pixel-fidelity metrics, such as Peak Signal to Noise Ratio (PSNR). The experimental results demonstrate our improvement compared to previously well-performing methods, with about 8.2% bitrate saving compared to VTM-17.0. The source code is available at https://​github.​com/​GityuxiLiu/​SegPIC-for-Image-Compression.
Yuxi Liu, Wenhan Yang, Huihui Bai, Yunchao Wei, Yao Zhao
Enhancing Tracking Robustness with Auxiliary Adversarial Defense Networks
Abstract
Adversarial attacks in visual object tracking have significantly degraded the performance of advanced trackers by introducing imperceptible perturbations into images. However, there is still a lack of research on designing adversarial defense methods for object tracking. To address these issues, we propose an effective auxiliary pre-processing defense network, AADN, which performs defensive transformations on the input images before feeding them into the tracker. Moreover, it can be seamlessly integrated with other visual trackers as a plug-and-play module without parameter adjustments. We train AADN using adversarial training, specifically employing Dua-Loss to generate adversarial samples that simultaneously attack the classification and regression branches of the tracker. Extensive experiments conducted on the OTB100, LaSOT, and VOT2018 benchmarks demonstrate that AADN maintains excellent defense robustness against adversarial attack methods in both adaptive and non-adaptive attack scenarios. Moreover, when transferring the defense network to heterogeneous trackers, it exhibits reliable transferability. Finally, AADN achieves a processing time of up to 5ms/frame, allowing seamless integration with existing high-speed trackers without introducing significant computational overhead.
Zhewei Wu, Ruilong Yu, Qihe Liu, Shuying Cheng, Shilin Qiu, Shijie Zhou
SLIM: Spuriousness Mitigation with Minimal Human Annotations
Abstract
Recent studies highlight that deep learning models often learn spurious features mistakenly linked to labels, compromising their reliability in real-world scenarios where such correlations do not hold. Despite the increasing research effort, existing solutions often face two main challenges: they either demand substantial annotations of spurious attributes, or they yield less competitive outcomes with expensive training when additional annotations are absent. In this paper, we introduce SLIM, a cost-effective and performance-targeted approach to reducing spurious correlations in deep learning. Our method leverages a human-in-the-loop protocol featuring a novel attention labeling mechanism with a constructed attention representation space. SLIM significantly reduces the need for exhaustive additional labeling, requiring human input for fewer than \(3\%\) of instances. By prioritizing data quality over complicated training strategies, SLIM curates a smaller yet more feature-balanced data subset, fostering the development of spuriousness-robust models. Experimental validations across key benchmarks demonstrate that SLIM competes with or exceeds the performance of leading methods while significantly reducing costs. The SLIM framework thus presents a promising path for developing reliable models more efficiently. Our code is available in https://​github.​com/​xiweix/​SLIM.​git/​.
Xiwei Xuan, Ziquan Deng, Hsuan-Tien Lin, Kwan-Liu Ma
Uncertainty Calibration with Energy Based Instance-Wise Scaling in the Wild Dataset
Abstract
With the rapid advancement in the performance of deep neural networks (DNNs), there has been significant interest in deploying and incorporating artificial intelligence (AI) systems into real-world scenarios. However, many DNNs lack the ability to represent uncertainty, often exhibiting excessive confidence even when making incorrect predictions. To ensure the reliability of AI systems, particularly in safety-critical cases, DNNs should transparently reflect the uncertainty in their predictions. In this paper, we investigate robust post-hoc uncertainty calibration methods for DNNs within the context of multi-class classification tasks. While previous studies have made notable progress, they still face challenges in achieving robust calibration, particularly in scenarios involving out-of-distribution (OOD). We identify that previous methods lack adaptability to individual input data and struggle to accurately estimate uncertainty when processing inputs drawn from the wild dataset. To address this issue, we introduce a novel instance-wise calibration method based on an energy model. Our method incorporates energy scores instead of softmax confidence scores, allowing for adaptive consideration of DNN uncertainty for each prediction within a logit space. In experiments, we show that the proposed method consistently maintains robust performance across the spectrum, spanning from in-distribution to OOD scenarios, when compared to other state-of-the-art methods. The source code is available at https://​github.​com/​mijoo308/​Energy-Calibration.
Mijoo Kim, Junseok Kwon
X-Pose: Detecting Any Keypoints
Abstract
This work aims to address an advanced keypoint detection problem: how to accurately detect any keypoints in complex real-world scenarios, which involves massive, messy, and open-ended objects as well as their associated keypoints definitions. Current high-performance keypoint detectors often fail to tackle this problem due to their two-stage schemes, under-explored prompt designs, and limited training data. To bridge the gap, we propose X-Pose, a novel end-to-end framework with multi-modal (i.e., visual, textual, or their combinations) prompts to detect multi-object keypoints for any articulated (e.g., human and animal), rigid, and soft objects within a given image. Moreover, we introduce a large-scale dataset called UniKPT, which unifies 13 keypoint detection datasets with 338 keypoints across 1, 237 categories over 400K instances. Training with UniKPT, X-Pose effectively aligns text-to-keypoint and image-to-keypoint due to the mutual enhancement of multi-modal prompts based on cross-modality contrastive learning. Our experimental results demonstrate that X-Pose achieves notable improvements of 27.7 AP, 6.44 PCK, and 7.0 AP compared to state-of-the-art non-promptable, visual prompt-based, and textual prompt-based methods in each respective fair setting. More importantly, the in-the-wild test demonstrates X-Pose ’s strong fine-grained keypoint localization and generalization abilities across image styles, object categories, and poses, paving a new path to multi-object keypoint detection in real applications.
Jie Yang, Ailing Zeng, Ruimao Zhang, Lei Zhang
MDepth: Self-supervised Two-Frame Multi-camera Metric Depth Estimation
Abstract
This paper presents a novel self-supervised two-frame multi-camera metric depth estimation network, termed M\({^2}\)Depth, which is designed to predict reliable scale-aware surrounding depth in autonomous driving. Unlike the previous works that use multi-view images from a single time-step or multiple time-step images from a single camera, M\({^2}\)Depth takes temporally adjacent two-frame images from multiple cameras as inputs and produces high-quality surrounding depth. We first construct cost volumes in spatial and temporal domains individually and propose a spatial-temporal fusion module that integrates the spatial-temporal information to yield a strong volume presentation. We additionally combine the neural prior from SAM features with internal features to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M\({^2}\)Depth achieves state-of-the-art performance. More results can be found in project page.
Yingshuang Zou, Yikang Ding, Xi Qiu, Haoqian Wang, Haotian Zhang
UniMD: Towards Unifying Moment Retrieval and Temporal Action Detection
Abstract
Temporal Action Detection (TAD) focuses on detecting pre-defined actions, while Moment Retrieval (MR) aims to identify the events described by open-ended natural language within untrimmed videos. Despite that they focus on different events, we observe they have a significant connection. For instance, most descriptions in MR involve multiple actions from TAD. In this paper, we aim to investigate the potential synergy between TAD and MR. Firstly, we propose a unified architecture, termed Unified Moment Detection (UniMD), for both TAD and MR. It transforms the inputs of the two tasks, namely actions for TAD or events for MR, into a common embedding space, and utilizes two novel query-dependent decoders to generate a uniform output of classification score and temporal segments. Secondly, we explore the efficacy of two task fusion learning approaches, pre-training and co-training, in order to enhance the mutual benefits between TAD and MR. Extensive experiments demonstrate that the proposed task fusion learning scheme enables the two tasks to help each other and outperform the separately trained counterparts. Impressively, UniMD achieves state-of-the-art results on three paired datasets Ego4D, Charades-STA, and ActivityNet. Our code is available at https://​github.​com/​yingsen1/​UniMD.
Yingsen Zeng, Yujie Zhong, Chengjian Feng, Lin Ma
DyFADet: Dynamic Feature Aggregation for Temporal Action Detection
Abstract
Recent proposed neural network-based Temporal Action Detection (TAD) models are inherently limited to extracting the discriminative representations and modeling action instances with various lengths from complex scenes by shared-weights detection heads. Inspired by the successes in dynamic neural networks, in this paper, we build a novel dynamic feature aggregation (DFA) module that can simultaneously adapt kernel weights and receptive fields at different timestamps. Based on DFA, the proposed dynamic encoder layer aggregates the temporal features within the action time ranges and guarantees the discriminability of the extracted representations. Moreover, using DFA helps to develop a Dynamic TAD head (DyHead), which adaptively aggregates the multi-scale features with adjusted parameters and learned receptive fields better to detect the action instances with diverse ranges from videos. With the proposed encoder layer and DyHead, a new dynamic TAD model, DyFADet, achieves promising performance on a series of challenging TAD benchmarks, including HACS-Segment, THUMOS14, ActivityNet-1.3, Epic-Kitchen 100, Ego4D-Moment QueriesV1.0, and FineAction. Code is released to https://​github.​com/​yangle15/​DyFADet-pytorch.
Le Yang, Ziwei Zheng, Yizeng Han, Hao Cheng, Shiji Song, Gao Huang, Fan Li
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
Abstract
In this work, we present a novel method to tackle the token generation challenge in Vision Language Models (VLMs) for video and image understanding, called LLaMA-VID. Current VLMs, while proficient in tasks like image captioning and visual question answering, face computational burdens when processing long videos due to the excessive visual tokens. LLaMA-VID addresses this issue by representing each frame with two distinct tokens, namely context token and content token. The context token encodes the overall image context based on user input, whereas the content token encapsulates visual cues in each frame. This dual-token strategy significantly reduces the overload of long videos while preserving critical information. Generally, LLaMA-VID empowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. It is demonstrated to surpass previous methods on most of video- or image-based benchmarks. Code and models are available at https://​github.​com/​dvlab-research/​LLaMA-VID.
Yanwei Li, Chengyao Wang, Jiaya Jia
MetaCap: Meta-learning Priors from Multi-view Imagery for Sparse-View Human Performance Capture and Rendering
Abstract
Faithful human performance capture and free-view rendering from sparse RGB observations is a long-standing problem in Vision and Graphics. The main challenges are the lack of observations and the inherent ambiguities of the setting, e.g. occlusions and depth ambiguity. As a result, radiance fields, which have shown great promise in capturing high-frequency appearance and geometry details in dense setups, perform poorly when naïvely supervising them on sparse camera views, as the field simply overfits to the sparse-view inputs. To address this, we propose MetaCap, a method for efficient and high-quality geometry recovery and novel view synthesis given very sparse or even a single view of the human. Our key idea is to meta-learn the radiance field weights solely from potentially sparse multi-view videos, which can serve as a prior when fine-tuning them on sparse imagery depicting the human. This prior provides a good network weight initialization, thereby effectively addressing ambiguities in sparse-view capture. Due to the articulated structure of the human body and motion-induced surface deformations, learning such a prior is non-trivial. Therefore, we propose to meta-learn the field weights in a pose-canonicalized space, which reduces the spatial feature range and makes feature learning more effective. Consequently, one can fine-tune our field parameters to quickly generalize to unseen poses, novel illumination conditions as well as novel and sparse (even monocular) camera views. For evaluating our method under different scenarios, we collect a new dataset, WildDynaCap, which contains subjects captured in, both, a dense camera dome and in-the-wild sparse camera rigs, and demonstrate superior results compared to recent state-of-the-art methods on, both, public and WildDynaCap dataset.
Guoxing Sun, Rishabh Dabral, Pascal Fua, Christian Theobalt, Marc Habermann
DiffPMAE: Diffusion Masked Autoencoders for Point Cloud Reconstruction
Abstract
Point cloud streaming is increasingly getting popular, evolving into the norm for interactive service delivery and the future Metaverse. However, the substantial volume of data associated with point clouds presents numerous challenges, particularly in terms of high bandwidth consumption and large storage capacity. Despite various solutions proposed thus far, with a focus on point cloud compression, upsampling, and completion, these reconstruction-related methods continue to fall short in delivering high fidelity point cloud output. As a solution, in DiffPMAE, we propose an effective point cloud reconstruction architecture. Inspired by self-supervised learning concepts, we combine Masked Autoencoder and Diffusion Model to remotely reconstruct point cloud data. By the nature of this reconstruction process, DiffPMAE can be extended to many related downstream tasks including point cloud compression, upsampling and completion. Leveraging ShapeNet-55 and ModelNet datasets with over 60000 objects, we validate the performance of DiffPMAE exceeding many state-of-the-art methods in terms of autoencoding and downstream tasks considered. Our source code is available at: https://​github.​com/​TyraelDLee/​DiffPMAE.
Yanlong Li, Chamara Madarasingha, Kanchana Thilakarathna
Multi-branch Collaborative Learning Network for 3D Visual Grounding
Abstract
3D referring expression comprehension (3DREC) and segmentation (3DRES) have overlapping objectives, indicating their potential for collaboration. However, existing collaborative approaches predominantly depend on the results of one task to make predictions for the other, limiting effective collaboration. We argue that employing separate branches for 3DREC and 3DRES tasks enhances the model’s capacity to learn specific information for each task, enabling them to acquire complementary knowledge. Thus, we propose the MCLN framework, which includes independent branches for 3DREC and 3DRES tasks. This enables dedicated exploration of each task and effective coordination between the branches. Furthermore, to facilitate mutual reinforcement between these branches, we introduce a Relative Superpoint Aggregation (RSA) module and an Adaptive Soft Alignment (ASA) module. These modules significantly contribute to the precise alignment of prediction results from the two branches, directing the module to allocate increased attention to key positions. Comprehensive experimental evaluation demonstrates that our proposed method achieves state-of-the-art performance on both the 3DREC and 3DRES tasks, with an increase of \(\mathbf {2.05\%}\) in Acc@0.5 for 3DREC and \(\mathbf {3.96\%}\) in mIoU for 3DRES. Our code is available at https://​github.​com/​qzp2018/​MCLN.
Zhipeng Qian, Yiwei Ma, Zhekai Lin, Jiayi Ji, Xiawu Zheng, Xiaoshuai Sun, Rongrong Ji
DynamiCrafter: Animating Open-Domain Images with Video Diffusion Priors
Abstract
Animating a still image offers an engaging visual experience. Traditional image animation techniques mainly focus on animating natural scenes with stochastic dynamics (e.g. clouds and fluid) or domain-specific motions (e.g. human hair or body motions), and thus limits their applicability to more general visual content. To overcome this limitation, we explore the synthesis of dynamic content for open-domain images, converting them into animated videos. The key idea is to utilize the motion prior of text-to-video diffusion models by incorporating the image into the generative process as guidance. Given an image, we first project it into a text-aligned rich image context representation space using a query Transformer, which facilitates the video model to digest the image content in a compatible fashion. However, some visual details still struggle to be preserved in the resultant videos. To supplement with more precise image information, we further feed the full image to the diffusion model by concatenating it with the initial noises. Experimental results show that our proposed method can produce visually convincing and more logical & natural motions, as well as higher conformity to the input image. Comparative evaluation demonstrates the notable superiority of our approach over existing competitors.
Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu, Xintao Wang, Ying Shan, Tien-Tsin Wong
Motion Aware Event Representation-Driven Image Deblurring
Abstract
Traditional image deblurring struggles with high-quality reconstruction due to limited motion data from single blurred images. Excitingly, the high-temporal resolution of event cameras records motion more precisely in a different modality, transforming image deblurring. However, many event camera-based methods, which only care about the final value of the polarity accumulation, ignore the influence of the absolute intensity change where events generate so fall short in perceiving motion patterns and effectively aiding image reconstruction. To overcome this, in this work, we propose a new event preprocessing technique that accumulates the deviation from the initial moment each time the event is updated. This process can distinguish the order of events to improve the perception of object motion patterns. To complement our proposed event representation, we create a recurrent module designed to meticulously extract motion features across local and global time scales. To further facilitate the event feature and image feature integration, which assists in image reconstruction, we develop a bi-directional feature alignment and fusion module. This module works to lessen inter-modal inconsistencies. Our approach has been thoroughly tested through rigorous experiments carried out on several datasets with different distributions. These trials have delivered promising results, with our method achieving top-tier performance in both quantitative and qualitative assessments. Code is available at https://​github.​com/​ZhijingS/​DA_​event_​deblur.
Zhijing Sun, Xueyang Fu, Longzhuo Huang, Aiping Liu, Zheng-Jun Zha
Turbo: Informativity-Driven Acceleration Plug-In for Vision-Language Large Models
Abstract
Vision-Language Large Models (VLMs) recently become primary backbone of AI, due to the impressive performance. However, their expensive computation costs, i.e., throughput and delay, impede potentials in the real-world scenarios. To achieve acceleration for VLMs, most existing methods focus on the model perspective: pruning, distillation, quantization, but completely overlook the data-perspective redundancy. To fill the overlook, this paper pioneers the severity of data redundancy, and designs one plug-and-play Turbo module guided by information degree to prune inefficient tokens from visual or textual data. In pursuit of efficiency-performance trade-offs, information degree takes two crucial factors into consideration: mutual redundancy and semantic value. Concretely, the former evaluates data duplication between sequential tokens; while the latter evaluates each token by its contribution to the overall semantics. As a result, tokens with high information degree carry less redundancy and stronger semantics. For VLMs’ calculation, Turbo works as a user-friendly plug-in that sorts data referring to information degree, utilizing only top-level ones to save costs. Its advantages are multifaceted, e.g., being generally compatible to various VLMs across understanding and generation, simple use without re-training and trivial engineering efforts. On multiple VLMs benchmarks, we fully experiment to demonstrate the good acceleration of Turbo, under negligible performance drop.
Chen Ju, Haicheng Wang, Haozhe Cheng, Xu Chen, Zhonghua Zhai, Weilin Huang, Jinsong Lan, Shuai Xiao, Bo Zheng
WildRefer: 3D Object Localization in Large-Scale Dynamic Scenes with Multi-modal Visual Data and Natural Language
Abstract
We introduce the task of 3D visual grounding in large-scale dynamic scenes based on natural linguistic descriptions and online captured multi-modal visual data, including 2D images and 3D LiDAR point clouds. We present a novel method, dubbed WildRefer, for this task by fully utilizing the rich appearance information in images, the position and geometric clues in point cloud as well as the semantic knowledge of language descriptions. Besides, we propose two novel datasets, i.e., STRefer and LifeRefer, which focus on large-scale human-centric daily-life scenarios accompanied with abundant 3D object and natural language annotations. Our datasets are significant for the research of 3D visual grounding in the wild and has huge potential to boost the development of autonomous driving and service robots. Extensive experiments and ablation studies demonstrate that our method achieves state-of-the-art performance on the proposed benchmarks. The code is provided in https://​github.​com/​4DVLab/​WildRefer.
Zhenxiang Lin, Xidong Peng, Peishan Cong, Ge Zheng, Yujin Sun, Yuenan Hou, Xinge Zhu, Sibei Yang, Yuexin Ma
Backmatter
Metadata
Title
Computer Vision – ECCV 2024
Editors
Aleš Leonardis
Elisa Ricci
Stefan Roth
Olga Russakovsky
Torsten Sattler
Gül Varol
Copyright Year
2025
Electronic ISBN
978-3-031-72952-2
Print ISBN
978-3-031-72951-5
DOI
https://doi.org/10.1007/978-3-031-72952-2

Premium Partner